Publicado en 3C TIC – Volume 12 Issue 2 (Ed. 43)
Autores
Weiqi Zhu
Resumen
Abstract
The development of the transportation industry can effectively accelerate the speed of economic development, in which bridges occupy an important position in transportation. The safety of the bridge design and construction process is a key part of bridge construction, and relying on human resources to investigate safety hazards greatly affects efficiency. In this paper, we combine deep learning technology and BIM model to explore the synergistic effect of both on the quality management of bridge construction phase and analyze the measured data. The results show that the application of BIM model can improve the efficiency by 35% compared with the traditional 2D CAD drawings, and the accuracy of data analysis can be improved by 12.51% and 14.26% for DNN and DBN models based on deep learning, respectively. The addition of the GSO algorithm leads to a further 19.19% improvement in the training accuracy of the coupled model. Finally, the optimization model was used to analyze the load factors and force majeure factors that affect the safety of the bridge, and to find the structural factors that affect the safety of the bridge design, which provides guidance to ensure the quality of the bridge during the construction process.
Artículo
Palabras clave
Keywords
BIM model; CATIA modeling; deep learning; bridge construction; quality and safety
Articulos relacionados