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ABSTRACT 
With the rapid development of the power system, cable faults have become an 
important factor affecting the stable operation of the power system. In this paper, for 
the problem of cable faults, we improve the overshoot, undershoot phenomenon and 
sieve speed of the envelope fitting in the Hilbert-Huang transform algorithm, and 
extract the harmonic characteristics of the current of cable faults by using the 
improved HHT model. Then, we utilize the information entropy and wavelet singular 
entropy algorithm to integrate semi-parametric support vector machine algorithm, S-
SVM, and construct the wavelet singular entropy and S-SVM model. The information 
entropy and wavelet singular entropy algorithms are fused with semiparametric 
support vector machine algorithm, S-SVM, and constructed into wavelet singular 
entropy and S-SVM models, which are applied to the cable fault identification 
experiments for detecting different faults in cables. The experimental results show 
that, when the cables are short-circuited, the currents of different short-circuited 
cables are all lower than the normal currents, and the wavelet singular entropy and S-
SVM models reach more than 92% of the accuracy of the identification of the 
degradation of the cable line and short-circuited faults. The accuracy of the wavelet 
singular entropy and S-SVM model for the identification of cable line deterioration and 
short circuit faults reaches more than 92%, and the overall cable fault detection 
reaches 98.04%.The maximum error value of the wavelet singular entropy and S-
SVM model for detection is 0.5329, and there are only two groups of data more than 
0.5.The algorithms in this paper are able to detect the various localization of the cable 
faults quickly and accurately, and they have a high practical value. 

KEYWORDS 
HHT algorithm; Wavelet singular entropy; S-SVM model; Current harmonic 
characteristics; Fault detection 
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reaches 98.04%.The maximum error value of the wavelet singular entropy and S-
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1. INTRODUCTION 

Power resources have become one of the most important energy sources in China, 
the rapid increase in the consumption of electric power resources in small, medium 
and large cities, in order to meet the needs of the masses of electricity, widely used 
power cables as a transmission tool and connecting lines [1-2]. the current 
development of China's electric power industry projects continue to increase, in order 
not to take up too much land resources, cables are usually generally buried in the 
ground, which increases the difficulty of troubleshooting power cable faults to a certain 
extent. If the maintenance work is not timely, then it is easy to increase the probability 
of power outages, bringing difficulties to the people's lives, directly affecting people's 
production and life [3-4]. combined with the current social development trend in China, 
the most critical type of power system failure is cable failure, to ensure the stability 
and safe operation of China's power system, it is necessary to carry out power cable 
failure at the first time, the power cable failure is the most critical type of power cable 
failure. To ensure the stable and safe operation of China's power system, it is 
necessary to carry out power cable fault inspection and testing at the first time, 
accurately put forward the cable inspection method, and effectively put forward the 
measures to solve the fault, repair the power cable faults, so as to promote the 
stability and safety of the power project [5-6]. 

In order to reduce the use of land resources, to bring higher economic benefits, so 
the cable is usually buried in the ground, but this to a certain extent also brings certain 
problems, due to the cable buried deep underground, if a fault occurs, it is difficult to 
investigate, which increases the difficulty of investigation [7-8]. In the detection of 
cable faults, the principle that must be adhered to is to be green, while maximizing the 
economic benefits, not only to require the practicality of strong, but also to ensure that 
the scientific nature of the use of advanced technology to fully reduce losses, and 
constantly improve the efficiency of the power grid in the operation of the power 
industry to a certain extent will promote the progress and development of China's 
electric power industry, and play a huge significance of the promotion of the [9-10]. 

With the continuous development of the market economy, people's living standards 
continue to improve, the structure of the urban power grid is more complex, the 
number of cables in use is increasing day by day. the safety of the cable operation, 
directly on the power system to bring a direct impact on the cable management and 
maintenance of the power sector has become the focus of the attention of the electric 
power sector. Baranowski, J. and other researchers proposed a new method to detect 
different signals based on the depth distribution of the Bayesian function to diagnose 
cable faults, the results of the study confirm that the method has great potential for 
diagnosis in unknown situations [11]. Liu, X. and other researchers designed a short 
cable line fault location method based on the theory of transmission line and the 
circuit theorem, and the test was carried out on 50 coaxial cables, and the test verified 
that the accuracy of this method is not affected by the impedance of faults and the 
terminating impedance [12]. Xuebin, Q. and other researchers proposed an on-line 
cable fault diagnosis method to address the need for on-line diagnosis of cable faults, 
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cable faults, the principle that must be adhered to is to be green, while maximizing the 
economic benefits, not only to require the practicality of strong, but also to ensure that 
the scientific nature of the use of advanced technology to fully reduce losses, and 
constantly improve the efficiency of the power grid in the operation of the power 
industry to a certain extent will promote the progress and development of China's 
electric power industry, and play a huge significance of the promotion of the [9-10]. 

With the continuous development of the market economy, people's living standards 
continue to improve, the structure of the urban power grid is more complex, the 
number of cables in use is increasing day by day. the safety of the cable operation, 
directly on the power system to bring a direct impact on the cable management and 
maintenance of the power sector has become the focus of the attention of the electric 
power sector. Baranowski, J. and other researchers proposed a new method to detect 
different signals based on the depth distribution of the Bayesian function to diagnose 
cable faults, the results of the study confirm that the method has great potential for 
diagnosis in unknown situations [11]. Liu, X. and other researchers designed a short 
cable line fault location method based on the theory of transmission line and the 
circuit theorem, and the test was carried out on 50 coaxial cables, and the test verified 
that the accuracy of this method is not affected by the impedance of faults and the 
terminating impedance [12]. Xuebin, Q. and other researchers proposed an on-line 
cable fault diagnosis method to address the need for on-line diagnosis of cable faults, 
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which is more advantageous than the traditional shallow neural network-based cable 
fault identification method [13]. Cataldo, A. C. G. described the time-domain 
reflectance (TDR) based localization method along the permittivity variations (DPVs) 
of cable systems, and pointed out that due to the increase in the number of DPVs, the 
fault location is not as accurate as the fault impedance and termination impedance of 
the cable system. It was pointed out that increasing the pulse width to study the 
localization of cables over longer distances leads to focusing on different TDR 
reflectance maps each time, which is very time-consuming and does not guarantee 
optimal performance [14].Wang, F. and other researchers envisioned a fault 
diagnostic method based on the BP-Adaboost algorithm to solve the problem of faults 
on aeronautical cables, and the results of the algorithm were studied by using the 
Matlab software for analysis and example feedback to validate the results. Matlab 
software is used to analyze the algorithm results and feedback examples to verify the 
feasibility of the proposed fault diagnosis method [15]. Sian, H. W. and other 
researchers designed a hybrid diagnostic algorithm based on the Discrete Wavelet 
Transform (DWT) and Symmetric Dot Plot (SDP) analysis of Convolutional 
Probabilistic Neural Networks (CPNN) to solve the insulation faults in XLPE cables. 
Simulation tests show that the accuracy of this method is more than 96%, and the 
accuracy of this method is higher than 96%. Simulation tests have shown that the 
method can diagnose power cable faults with an accuracy of more than 96% and a 
short detection time, which makes it fully capable of detecting insulation faults in 
cables [16]. Marriott, N. discusses the role and advantages of Megger's new SMART 
THUMP ST25-30 Portable Cable Tester, which provides an automated test sequence 
with the ability to identify, prelocate, and pinpoint cable faults, and to automatically 
supplement the interpretation of the test results. Non-specialized users can obtain 
reliable results in a safe and easy way [17]. Lowczowski, K. and other researchers 
analyzed the application of cable shielding currents in the identification and location of 
ground faults, and in this way gave phase ground fault currents in different power 
system configurations, in order to test the ability to detect faults based on the above 
principles, and proved the reliability of this method for fault detection. Finally, a 
solution to improve the localization capability is proposed, and the feasibility of the 
improved solution is confirmed by simulation tests with PSCAD software [18]. Hu, C. 
and other researchers investigate the ship cable fault information acquisition model 
based on the automatic identification technology, and simulation tests are conducted 
to confirm the feasibility of the Hilbert-Huang Transform (HHT) to automatically identify 
cable faults, and to construct an automatic cable fault information acquisition model 
[19]. Lai, Q. and other researchers studied the 110kv transmission line cable terminal 
tail pipe breakdown fault, and give the cable installation improvement measures to 
reduce the probability of cable terminal breakdown faults, and after simulation and 
disassembly test, the feasibility analysis, for similar cable faults, is carried out. The 
feasibility analysis is carried out to provide important reference opinions for the 
investigation and solution of similar cable faults [20]. Liu, N. and other researchers 
conceived a deep neural network-based cable fault signal classification and 
identification method to accurately identify the early cable fault problems, and the 
reliability of the method is demonstrated through experiments [21]. Wang, Y. and other 
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researchers designed a method based on the constrained Boltzmann machine 
( Wang, Y. and other researchers designed a cable early fault identification method 
based on Restricted Boltzmann Machine (RBM) and Stacked Auto-Encoder (SAE), 
which demonstrated higher accuracy after simulation tests comparing with traditional 
methods such as convolutional neural networks [22]. A new algorithm for accurate 
location of early faults in underground cables using double-ended synchronized zero 
sequence waveforms was proposed by Qu, K. et al. A large number of simulation 
experiments were conducted at PSCAD/EMTDC to support the accuracy and 
reliability of the algorithm [23]. Kwon, G. Y. et al. discussed an improved fault 
localization technique, instantaneous frequency-domain reflectance and tangent-
distance pattern recognition, for fault diagnosis and protection of cables, and 
simulation data verified that this method can improve the reliability of high-voltage DC 
power systems. For fault diagnosis and protection of cables, and simulated test data 
verified that this method can improve the reliability of HVDC power systems [24]. 

In this paper, the Hilbert transform is applied to the IMF components to obtain the 
Hilbert-Huang transform model, and then the local extreme points are densified by 
using the cut-contact mean points, and then the interpolated curve segments are 
spliced by the segmented power function to improve the insufficiency of the envelope 
fitting in the HHT transform model, and then the current harmonic characteristics of 
the cable faults are extracted and analyzed, and the wavelet singularity is obtained by 
combining the wavelet transform with the information entropy. The wavelet singular 
entropy is obtained by combining the information entropy and wavelet transform, 
which is integrated into the S-SVM algorithm, and the sparse greedy matrix 
approximation is used to select the basic element set, and the iterative reweighted 
least squares algorithm is introduced to iterate and optimize the S-SVM model, which 
finally constitutes the wavelet singular entropy and the S-SVM model. the signal is 
decomposed by the wavelet singular entropy and the signal components are 
extracted, and the extracted current harmonic features are screened and 
reconstructed, and the current harmonic features are extracted and analyzed. After 
that, the extracted current harmonic feature vectors are filtered and reconstructed, 
and then the cable fault samples are input to the S-SVM model for training, and finally 
the wavelet singular entropy and S-SVM models are realized to accurately identify 
different faults of cables. 
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location of early faults in underground cables using double-ended synchronized zero 
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simulation data verified that this method can improve the reliability of high-voltage DC 
power systems. For fault diagnosis and protection of cables, and simulated test data 
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In this paper, the Hilbert transform is applied to the IMF components to obtain the 
Hilbert-Huang transform model, and then the local extreme points are densified by 
using the cut-contact mean points, and then the interpolated curve segments are 
spliced by the segmented power function to improve the insufficiency of the envelope 
fitting in the HHT transform model, and then the current harmonic characteristics of 
the cable faults are extracted and analyzed, and the wavelet singularity is obtained by 
combining the wavelet transform with the information entropy. The wavelet singular 
entropy is obtained by combining the information entropy and wavelet transform, 
which is integrated into the S-SVM algorithm, and the sparse greedy matrix 
approximation is used to select the basic element set, and the iterative reweighted 
least squares algorithm is introduced to iterate and optimize the S-SVM model, which 
finally constitutes the wavelet singular entropy and the S-SVM model. the signal is 
decomposed by the wavelet singular entropy and the signal components are 
extracted, and the extracted current harmonic features are screened and 
reconstructed, and the current harmonic features are extracted and analyzed. After 
that, the extracted current harmonic feature vectors are filtered and reconstructed, 
and then the cable fault samples are input to the S-SVM model for training, and finally 
the wavelet singular entropy and S-SVM models are realized to accurately identify 
different faults of cables. 
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2. CONSTRUCTION OF INTELLIGENT CABLE FAULT 
DETECTION MODEL 

2.1. CONSTRUCTION OF IMPROVED HILBERT-HUANG 
TRANSFORM MODELS 

2.1.1. HILBERT-HUANG TRANSFORM ALGORITHM 

The HHT algorithm is to sieve the various frequency components or trends 
contained in the signal layer by layer in order to obtain a series of IMF components 
containing different feature information, and then these IMF components are 
subjected to the Hilbert transform, which can obtain the Hilbert spectra and the 
marginal spectra, and then obtain the amplitude distribution pattern of the signal in the 
spatial or temporal scale. 

1. Instantaneous frequency 

In the process of analyzing nonlinear signals, the instantaneous characteristics 
have a very important role, in the traditional Fourier transform, less than a wavelength 
signal will not be able to give the definition of the frequency, that is, it cannot be used 
to accurately describe the instantaneous parameters of the non-smooth signal, the 
instantaneous frequency mentioned in the Hilbert transform has the actual physical 
meaning, and the basic definition of the frequency is consistent. 

When analyzing a smooth signal, the frequency of the signal refers to the  in the 
Fourier transform. 

  (1) 

In the formula , becomes the Fourier frequency, and the time is not related. 

When analyzing non-stationary signals, the instantaneous frequency changes with 
time, and it is not possible to accurately describe the changing frequency, the Fourier 
frequency loses its significance, so a new definition of the instantaneous frequency is 
needed to describe this change. 

Let  be a signal of any time series,  is the Hilbert transform of the signal, 
then  can be expressed by  as follows.  

  (2) 

Meanwhile,  can be expressed by  as follows: 

f

X( f ) = ∫
∞

−∞
 x(t)e−jπ ftdt

f

X(t) Y(t)
Y(t) X(t)

Y(t) =
1
π ∫

∞

−∞
 
X(t)
t − τ

dτ

X(t) Y(t)
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  (3) 

From the above two equations, we can know that  and  are complex 
conjugate pairs, and  and  are correlated with the time series, so we can get 
the following analyzed signals. 

  (4) 

  (5) 

  (6) 

Where  is the instantaneous amplitude and  is the phase. another 
instantaneous parameter is known from the phase and frequency. 

  (7) 

As can be seen from the above equation, the Hilbert transform obtains a unique 

function,  is the convolution of the Hilbert transform with  and , which 

emphasizes the limitation of the characteristics of  The three instantaneous 
parameters of the signal can be found out through the Hilbert transform, i.e., the 
instantaneous amplitude, the instantaneous phase, and the instantaneous frequency. 
Each of the parameters is analytic, thus, the Hilbert transform has a real-life 
instantaneous characteristic.  

2. Intrinsic Modal Functions 

In general, a data often contains more than one oscillation mode, a simple Hilbert 
transform can not be decomposed into all the frequencies of a signal, so the data 
must first be decomposed into the intrinsic modal function. the definition of the 
instantaneous frequency of a signal needs to have the following necessary conditions, 
firstly, in the entire data segment, the function is symmetric, and secondly, the number 
of zeros and the number of extrema are the same, and finally, the local mean value of 
the signal is zero. Finally, the signal is locally zero-mean. 

N.E. Huang defined that the intrinsic modal function must satisfy the following two 
conditions. 

One is that the number of zero crossing points and the number of extreme points in 
the signal data are the same or differ by at most one. 

X(t) =
1
π ∫

∞

−∞
 
Y(t)
τ − t

dτ

X(t) Y(t)
X(t) Y(t)

Z(t) = X(t) + jY(t) = A(t)e jθ(t)

A(t) = X2(t) + Y 2(t)

θ(t) = arctan( Y(t)
X(t) )

A(t) θ(t)

f (t) =
1

2π
dθ(t)

dt

Y(t) X(t)
1
t

X(t)
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  (3) 

From the above two equations, we can know that  and  are complex 
conjugate pairs, and  and  are correlated with the time series, so we can get 
the following analyzed signals. 

  (4) 

  (5) 

  (6) 

Where  is the instantaneous amplitude and  is the phase. another 
instantaneous parameter is known from the phase and frequency. 

  (7) 

As can be seen from the above equation, the Hilbert transform obtains a unique 

function,  is the convolution of the Hilbert transform with  and , which 

emphasizes the limitation of the characteristics of  The three instantaneous 
parameters of the signal can be found out through the Hilbert transform, i.e., the 
instantaneous amplitude, the instantaneous phase, and the instantaneous frequency. 
Each of the parameters is analytic, thus, the Hilbert transform has a real-life 
instantaneous characteristic.  

2. Intrinsic Modal Functions 

In general, a data often contains more than one oscillation mode, a simple Hilbert 
transform can not be decomposed into all the frequencies of a signal, so the data 
must first be decomposed into the intrinsic modal function. the definition of the 
instantaneous frequency of a signal needs to have the following necessary conditions, 
firstly, in the entire data segment, the function is symmetric, and secondly, the number 
of zeros and the number of extrema are the same, and finally, the local mean value of 
the signal is zero. Finally, the signal is locally zero-mean. 

N.E. Huang defined that the intrinsic modal function must satisfy the following two 
conditions. 

One is that the number of zero crossing points and the number of extreme points in 
the signal data are the same or differ by at most one. 

X(t) =
1
π ∫

∞

−∞
 
Y(t)
τ − t
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X(t) Y(t)
X(t) Y(t)

Z(t) = X(t) + jY(t) = A(t)e jθ(t)

A(t) = X2(t) + Y 2(t)
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One is that the average value of the upper and lower envelopes formed by the local 
extreme value points and the local extreme value points of the IMF at any moment is 
zero, i.e., the local signal is symmetric about the time axis. 

3. Empirical modal decomposition method 

Empirical modal decomposition (EMD) method is the essence of the Hilbert-Huang 
transform, this method is a non-stationary complex signal from the separation of 
several IMF process, the process is known as the screening process, screened out of 
the various components superimposed on the actual data series. at any time, most of 
the signals are unable to meet the conditions of the IMF, so it is necessary to screen 
the signal first and then use the Hilbert transform on the signal. At any moment, most 
of the signals cannot meet the conditions of IMF, so the signals need to be filtered first 
and then processed by Hilbert transform for each IMF component, each IMF can be 
linear or nonlinear. 

The decomposition process is based on three assumptions: one is that the time-
domain characteristics are determined by the interval between the maxima and 
minima, two is that the original signal should have at least one maxima and one 
minima, three is that if the original signal contains only inflection points, the maxima 
and minima can be calculated by taking the first derivative or multiple derivatives of 
the signal, and then the signal can be reduced by integrating the signal. The specific 
steps of the empirical mode decomposition are as follows. 

The first step is to write the original signal as , determine all the maximum and 
minimum value points of , and fit the maximum value points to the upper 
envelope with the three times spline sampling function, and the minimum value points 
to the lower envelope with the three times spline sampling function, and the upper and 
lower envelopes should contain all the data. 

In the second step, the average value of the upper and lower envelopes is 
calculated and denoted as , and the original signal X(t), is subtracted from  to 
obtain a new sequence . 

  (8) 

In this decomposition, the low-frequency quantities of the signal are separated out, 
and  is the high-frequency quantity of the signal. Ideally, if  satisfies the two 
necessary conditions of IMF, then  is the first IMF component of the original signal 

, and is denoted as . 

In the third step, if the high-frequency quantity  does not satisfy the two 
necessary conditions of IMF, then  is continued as the original signal, repeat the 
above two steps, first calculate the average value of , denoted as , and then 
calculate , and judge whether  satisfies the two necessary 
conditions of IMF, if it does, then  is denoted as , if it doesn't, then continue to 

X(t)
X(t)

m1 m1
h1

h1 = X(t) − m1

h1 h1
h1

X(t) c1 = h1

h1
h1

h1 m11
h11 = h1 − m11 h11

h11 c1

https://doi.org/10.17993/3ctecno.2024.v13n1e45.99-128

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143 Ed.45  |  Iss.13  |  N.1  April - June 2024

107



calculate, and repeat the cycle of the first and the second steps, until the obtained  
satisfies the two necessary conditions and is denoted as , and  is the first 
IMF component of the original signal . 

In the fourth step, c1, is separated from the original signal  to obtain a signal 
that removes the high-frequency quantityv , denoted as . 

  (9) 

The  signal as the original signal, repeat the above steps, until we get a 
component that meets the two necessary conditions of IMF, which is recorded as , 
and have been so looped  times, we can get the  IMF components of the original 
signal , as shown in Eq. (10). 

  (10) 

In the fifth step, the loop to the end, there is a residual , the end of the loop 
termination conditions for the residual  is a monotonic function, that is, can no longer 
be extracted from it to meet the two necessary conditions of the IMF components, the 
end of the decomposition. the final decomposition of the form as shown in Equation 
(11). 

  (11) 

Where  is the IMF of the original signal and  is a residual that converges to a 
constant. 

2.1.2. IMPROVEMENT OF ENVELOPE FITTING ALGORITHM 

When the upper and lower envelopes of the signal are approximately symmetric, it 
is inappropriate to use the upper and lower envelopes to find the average envelope, 
and for the problems of overshoot, undershoot and sieving speed in the process of 
EMD, this paper proposes to firstly use the tangent mean point to densify the local 
extreme point, and then use the segment power function to interpolate and fit the 
tangent mean point and local extreme point, and finally splice the interpolated curve 
segments together, which is the final average envelope. Then the segmented power 
function is used to fit the interpolation of the tangential mean and local extreme points, 
and finally the interpolated curve segments are spliced together, which is the final 
mean envelope. 
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calculate, and repeat the cycle of the first and the second steps, until the obtained  
satisfies the two necessary conditions and is denoted as , and  is the first 
IMF component of the original signal . 

In the fourth step, c1, is separated from the original signal  to obtain a signal 
that removes the high-frequency quantityv , denoted as . 

  (9) 

The  signal as the original signal, repeat the above steps, until we get a 
component that meets the two necessary conditions of IMF, which is recorded as , 
and have been so looped  times, we can get the  IMF components of the original 
signal , as shown in Eq. (10). 

  (10) 

In the fifth step, the loop to the end, there is a residual , the end of the loop 
termination conditions for the residual  is a monotonic function, that is, can no longer 
be extracted from it to meet the two necessary conditions of the IMF components, the 
end of the decomposition. the final decomposition of the form as shown in Equation 
(11). 
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EMD, this paper proposes to firstly use the tangent mean point to densify the local 
extreme point, and then use the segment power function to interpolate and fit the 
tangent mean point and local extreme point, and finally splice the interpolated curve 
segments together, which is the final average envelope. Then the segmented power 
function is used to fit the interpolation of the tangential mean and local extreme points, 
and finally the interpolated curve segments are spliced together, which is the final 
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Since the density of the distribution of the points to be interpolated directly 
determines the interpolation accuracy and fitting effect, the densification of the 
extreme points by the tangent mean points can optimize the fitting effect, and then 
inhibit or eliminate the overshooting and undershooting phenomena in the envelope 
fitting. 

All the local extreme points are arranged in a time series, notated as 
, where  is the moment when the extreme point 

a p p e a r s , a n d  i s t h e a m p l i t u d e o f t h e e x t r e m e p o i n t . L e t 
 be the three neighboring extreme points, and 

the tangent touching the mean point is shown in Eq. (12). 

 (12) 

Where,  is the extreme point of the signal,  denotes the tangential 
mean point. 

2. Segmental power function interpolation 

Set the point to be interpolated as  as 
the interpolation function, and use the segmented power function to interpolate any 
three neighboring points .  

  (13) 

The interpolation function  satisfies equation (14). 

  (14) 

The value curve is shown in equation (15). 

  (15) 

Finally, the interpolated line segments are spliced together to obtain the mean 
envelope, which is constructed by the segmented cubic function after many 
experiments and comparisons. 
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2.1.3. IMPROVED HHT ALGORITHM FLOW 

The theory of the HHT algorithm and the operation of the specific improvement 
measures have been introduced, the improved HHT algorithm flowchart is shown in 
Fig. 1. firstly, after inputting the signal , find out all the local maxima and minima 
contained in the signal , and then use the cubic spline interpolation method to 
construct the envelope of the local maxima and minima, and then find out the average 
value of the envelope. If the  meets the condition of IMF component, then find out 
the energy of the remaining signal and proceed to the next step, if not, then re-screen 
repeatedly until the condition of IMF can be determined, and repeat the above steps 
until there is only one extreme point, then stop iterating. 

x(t)
x(t)

f (t)
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2.1.3. IMPROVED HHT ALGORITHM FLOW 
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Fig. 1. firstly, after inputting the signal , find out all the local maxima and minima 
contained in the signal , and then use the cubic spline interpolation method to 
construct the envelope of the local maxima and minima, and then find out the average 
value of the envelope. If the  meets the condition of IMF component, then find out 
the energy of the remaining signal and proceed to the next step, if not, then re-screen 
repeatedly until the condition of IMF can be determined, and repeat the above steps 
until there is only one extreme point, then stop iterating. 
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Figure 1 HHT algorithm improves the process 
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2.2. CONSTRUCTION OF WAVELET-BASED SINGULAR 
ENTROPY SUM AND S-SVM NETWORK MODELS 

2.2.1. SEMIPARAMETRIC SUPPORT VECTOR MACHINES 

Semi-parametric support vector machine, S-SVM, perfectly combines the 
advantages of parametric and non-parametric support vector machines, and improves 
the computational efficiency. Compared with linear support vector machine, S-SVM 
can handle non-linear sample data, and has better classification performance than 
non-linear support vector machine using soft intervals. S-SVM can avoid the problem 
of slow classifier computation caused by a large number of support vectors by using a 
predefined model. S-SVM avoids the slow computation problem caused by a large 
number of support vectors by using a predefined model. 

The predefined model selects a representative set of basic elements 
 from the sample data to reduce the size of the sample data set, 

and estimates the normal vector , and then calculates the discriminant function to 
construct the classifier. The expression of the normal vector estimated according to 
Equation (16) is as follows. 

  (16) 

Where  is the mapping function,  is similar to the Lagrange multiplier, and 
the objective function is similar to Eq. (17), denoted as. 

  (17) 

Where the matrix  denotes the  kernel matrix of the basic elements, i.e.,

. The discriminant function is 

constructed as described in the previous section. 

  (18) 

It can be seen that by limiting the size of the basic element set , the complexity 
and operation speed of the classifier can be effectively limited. However, the element 
set  plays an important role for this kind of classifier, which has a great influence on 
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2.2. CONSTRUCTION OF WAVELET-BASED SINGULAR 
ENTROPY SUM AND S-SVM NETWORK MODELS 

2.2.1. SEMIPARAMETRIC SUPPORT VECTOR MACHINES 

Semi-parametric support vector machine, S-SVM, perfectly combines the 
advantages of parametric and non-parametric support vector machines, and improves 
the computational efficiency. Compared with linear support vector machine, S-SVM 
can handle non-linear sample data, and has better classification performance than 
non-linear support vector machine using soft intervals. S-SVM can avoid the problem 
of slow classifier computation caused by a large number of support vectors by using a 
predefined model. S-SVM avoids the slow computation problem caused by a large 
number of support vectors by using a predefined model. 

The predefined model selects a representative set of basic elements 
 from the sample data to reduce the size of the sample data set, 

and estimates the normal vector , and then calculates the discriminant function to 
construct the classifier. The expression of the normal vector estimated according to 
Equation (16) is as follows. 

  (16) 

Where  is the mapping function,  is similar to the Lagrange multiplier, and 
the objective function is similar to Eq. (17), denoted as. 
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the classification performance and accuracy, and a processing tool that can accurately 
select the element set  is needed. 

2.2.2. SEMI-PARAMETRIC SUPPORT VECTOR MACHINES 
BASED ON LEAST SQUARES 

For the selection of the basic element set, this subsection adopts the sparse 
greedy matrix approximation, SGMA algorithm, and introduces the iterative 
reweighted least squares algorithm, IRWLS, to calculate the weights of the kernel 
function. 

The kernel function used in this paper is Gaussian kernel function, as shown in Eq. 
(19). 

  (19) 

The kernel matrix  of the sample data set  is denoted. 

  (20) 

In this paper, we use the hinge loss function to construct a soft interval classifier. 

  (21) 

Where y is the predicted classification output. 

2.2.3. SPARSE GREEDY MATRIX APPROXIMATION 

Given that the semiparametric support vector machine needs to select a suitable 
basic element set , this section introduces the sparse greedy matrix approximation 
algorithm to find the element set . The basic element set selected by using the 
SGMA algorithm can represent the whole sample dataset with the most representative 
features, which is very useful for solving the support vectors, constructing classifiers, 
and improving the classification performance. 
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For the sample dataset , a subset  is 
randomly selected; for optimal performance, the range of  needs to be larger than .

 The optimal set of basic elements  is 
selected by the elements in the subset . 

Assuming that the kernel function of the column vectors in the subset N is 
estimated to be , set a value  to be a linear combination of  and the 
kernel function , of the elements in . 

  (22) 

Where  is noted as the weight value. 

The approximation error of the weights  can be determined by the kernel function 
of the kernel matrix trace of the sample dataset  and the column vectors in the 
subset  as . 

  (23) 

After the new element  is added to the basic element set  by the SGMA 
algorithm, the new weight error is shown in Eqs. (24) and (25). 

  (24) 

  (25) 

 is the  kernel matrix of the basic element , and  is the  
kernel matrix of the subset  and the basic element set . 

From the above analysis, the SGMA algorithm can calculate the element with the 
maximum  value in the data set by the formula (25), and add this metamethod to 
the basic data set , so as to find out a group of subsets that can more accurately 
represent the distribution of the whole feature space. 
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For the sample dataset , a subset  is 
randomly selected; for optimal performance, the range of  needs to be larger than .

 The optimal set of basic elements  is 
selected by the elements in the subset . 

Assuming that the kernel function of the column vectors in the subset N is 
estimated to be , set a value  to be a linear combination of  and the 
kernel function , of the elements in . 
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Where  is noted as the weight value. 

The approximation error of the weights  can be determined by the kernel function 
of the kernel matrix trace of the sample dataset  and the column vectors in the 
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2.2.4. ITERATIVE REWEIGHTED LEAST SQUARES 

The iterative reweighted least squares, IRWLS, process is a solution method that 
has been widely used in the field of support vector machines. Compared with the 
weighted least squares algorithm, IRWLS can gradually correct for the effects of 
anomalous sample data and set the weights always within a relatively optimal range. 

For the Lagrangian function with the penalty factor  added. 

 (26) 

By taking the partial derivation of Eq. (26) and eliminating the term about  and 
calculating , Eq. (27) is converted as shown below. 
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Determine the weight  through equation (33). 

  (33) 

Where , vectors ,

 

The iterative process allows each round of training and learning to gradually correct 
the weight values, so that the weights  and  eventually converge to a fixed value, 
and the iterative calculation steps are as follows. 

Step 1: Pre-set a weight , solve the least squares problem to obtain . 

Step 2: Based on the correlation between weight BB and , re-calculate the 
value of  by calculating weight . 

Step 3: Repeat the first two steps until the weights  and  converge to a fixed 
convergence value. 

At this point, the discriminant function of the classifier is: 

  (34) 

2.2.5. WAVELET TRANSFORM 

The continuous wavelet transform of the function  is shown in equation (35). 
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which is shown in equation (36). 
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Determine the weight  through equation (33). 
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Step 2: Based on the correlation between weight BB and , re-calculate the 
value of  by calculating weight . 

Step 3: Repeat the first two steps until the weights  and  converge to a fixed 
convergence value. 

At this point, the discriminant function of the classifier is: 

  (34) 

2.2.5. WAVELET TRANSFORM 

The continuous wavelet transform of the function  is shown in equation (35). 

  (35) 

Where,  is the scale factor,  is the translation factor and  is the mother 
wavelet. 

Continuous wavelet transform can accurately extract the characteristics of the 
signal, but in each possible scale discrete points to calculate the wavelet coefficients, 
will be a huge project. if only a small part of these scales, and part of the time point, 
will greatly reduce the workload, and without loss of accuracy, the use of such an 
approximation will be obtained by the discrete wavelet transform, the definition of 
which is shown in equation (36). 
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  (36) 

In Eq. (36), the parameters  and  of continuous wavelet transform are replaced 
by  and ,  and MM are integers, and A02 is taken in general. The wavelet 
decomposition tree of the discrete wavelet transform is shown in Fig. 2. The original 
signal sequence of SN is shown in Fig. 2.  denotes the low-frequency coefficients 
of the decomposition of the  layer, and  denotes the high-frequency coefficients 
of the  decomposition. The signal components obtained from the decomposition of 
the decomposition coefficients of each layer by the single-branch reconstruction are 
denoted as  and , and then the original signal  is the sum of the signal 
components obtained by the reconstruction, and the formula is as follows. 

  (37) 

 
Figure 2 The wavelet decomposition tree 

2.2.6. SHANNON INFORMATION ENTROPY AND WAVELET 
SINGULAR ENTROPY 

Shannon information entropy and its state characteristics can be expressed by a 
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of , and the information entropy is defined as shown in Equation (38). 
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  (38) 

Wavelet singular entropy is a new data processing method obtained by combining 
wavelet transform with Shannon's information entropy theory, which is defined as 
follows. 

  (39) 

In Eq. (40),  is the incremental wavelet singular entropy of order . 

  (40) 

The  is calculated as follows. 

After the signal  wavelet decomposition and reconstruction of the components 
at the th scale is , then the  components of the signal  can 
form a  matrix , by the theory of signal singular value decomposition, for 
the above matrix , there exists a -dimensional matrix  and a 
-dimensional diagonal matrix  and a -dimensional matrix , so that the matrix 
Dmxn decomposition is as shown in Eq. (41). 

  (41) 

Where,  is the element on the main diagonal of the diagonal matrix 
, i.e., the singular value of the matrix  formed after the signal  is 

decomposed by the wavelet decomposition of the  layer and reconstructed.  

2.2.7. CABLE FAULT DETECTION STRATEGY BASED ON 
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In this section, wavelet singular entropy and semiparametric support vector 
machine are combined and applied to cable fault detection, and the cable fault 
detection strategy based on wavelet singular entropy and S-SVM model is shown in 
Fig. 2. firstly, the cable current signal is extracted, then wavelet singular entropy is 
used to decompose the signal, extract the meaningful sub-signal components, and 
then the correlation analysis is used to filter the components to reconstruct the fault 
signal, and then wavelet singular entropy is used to reduce the influence of non-
Gaussian noise on the fault signal, extract the wavelet energy entropy of harmonic 
components as feature vectors, and then the fault sample data is inputted into the S-
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  (38) 

Wavelet singular entropy is a new data processing method obtained by combining 
wavelet transform with Shannon's information entropy theory, which is defined as 
follows. 

  (39) 

In Eq. (40),  is the incremental wavelet singular entropy of order . 

  (40) 
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at the th scale is , then the  components of the signal  can 
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the above matrix , there exists a -dimensional matrix  and a 
-dimensional diagonal matrix  and a -dimensional matrix , so that the matrix 
Dmxn decomposition is as shown in Eq. (41). 
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used to decompose the signal, extract the meaningful sub-signal components, and 
then the correlation analysis is used to filter the components to reconstruct the fault 
signal, and then wavelet singular entropy is used to reduce the influence of non-
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effect of non-Gaussian noise on the fault signal, and the wavelet energy entropy of the 
harmonic components is extracted and used as the feature vectors. After that, the 
fault sample data are inputted into the S-SVM model for training, and the S-SVM 
model is f inally used to recognize and diagnose the test samples.

 

Figure 3 Cable fault detection strategy based on wavelet singular entropy and S-SVM model 

3. ANALYSIS OF INTELLIGENT CABLE FAULT 
DETECTION RESULTS CONSIDERING CURRENT 
HARMONIC FEATURES 

3.1. ANALYSIS OF INTELLIGENT DETECTION RESULTS OF 
CABLE LINE DETERIORATION FAULTS 

3.1.1. HARMONIC FEATURE EXTRACTION FOR CABLE LINE 
DEGRADATION 

In this section, according to the structural characteristics of the cable, 40,000 sets 
of harmonic diagnostic data of the same power cable are selected, and the harmonic 
content of the main part of the cable from the 2nd to the 10th harmonic is multiplied 
with its corresponding contribution rate, and 9 harmonic vectors are obtained as the 
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input data, and the degree of deterioration of the insulation, shielding, protective layer 
and cable joints are derived through the improved HHT transformation model. The 
energy spectrum of the harmonic vectors of different parts of the cable is shown in 
Fig. 4, and the relative energy of each harmonic is 1. The relative energies of the 
harmonic vectors are obviously different in diagnosing the operation status of different 
parts of the cable, the operation status of the cable insulator mainly depends on the 
change of the 2nd harmonic vector, with the relative energy value of 0.32, and the 
operation status of the shielding layer mainly depends on the change of the 2nd, 3rd, 
and 5th harmonic vectors, with the relative energy value of 0.24, 0.25, 0.2, 0.5, and 
0.6, respectively. 0.25 and 0.2 respectively, and the operating state of the protective 
layer and the roving state of the cable joints mainly depends on the changes of the 
2nd, 4th, 7th, 8th and 9th harmonic vectors, with the relative energy values of 0.3, 
0.25 and 0.26, 0.26, 0.3 respectively. The harmonic vectors obtained based on the 
improved HHT transformation model completely characterize the operating state of 
the different parts of the cables. 

 

Figure 4 The shoe wave vector energy spectrum of the different parts of the cable 

3.1.2. ANALYSIS OF CABLE LINE DETERIORATION 
IDENTIFICATION TEST RESULTS 

In this section, based on the wavelet singular entropy and S-SVM model to identify 
and detect the degradation of cable lines, in order to verify the accuracy of the wavelet 
singular entropy and S-SVM model, the harmonic characteristics database of different 
fault loss currents of cables is formed by taking the harmonic total aberration rate, the 
fundamental content and the harmonic contents of each harmonic as the 
characteristics.Firstly, we extracted the sample data of the loss currents in the 
database to form the sample data set of the wavelet singular entropy and S-SVM 
model. Then some data in the sample data set are randomly extracted as the training 
sample set, and the rest of the data in the sample data set are used as the test 
sample set. finally, different ratios of the training set to the test set are set, and 
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input data, and the degree of deterioration of the insulation, shielding, protective layer 
and cable joints are derived through the improved HHT transformation model. The 
energy spectrum of the harmonic vectors of different parts of the cable is shown in 
Fig. 4, and the relative energy of each harmonic is 1. The relative energies of the 
harmonic vectors are obviously different in diagnosing the operation status of different 
parts of the cable, the operation status of the cable insulator mainly depends on the 
change of the 2nd harmonic vector, with the relative energy value of 0.32, and the 
operation status of the shielding layer mainly depends on the change of the 2nd, 3rd, 
and 5th harmonic vectors, with the relative energy value of 0.24, 0.25, 0.2, 0.5, and 
0.6, respectively. 0.25 and 0.2 respectively, and the operating state of the protective 
layer and the roving state of the cable joints mainly depends on the changes of the 
2nd, 4th, 7th, 8th and 9th harmonic vectors, with the relative energy values of 0.3, 
0.25 and 0.26, 0.26, 0.3 respectively. The harmonic vectors obtained based on the 
improved HHT transformation model completely characterize the operating state of 
the different parts of the cables. 

 

Figure 4 The shoe wave vector energy spectrum of the different parts of the cable 

3.1.2. ANALYSIS OF CABLE LINE DETERIORATION 
IDENTIFICATION TEST RESULTS 

In this section, based on the wavelet singular entropy and S-SVM model to identify 
and detect the degradation of cable lines, in order to verify the accuracy of the wavelet 
singular entropy and S-SVM model, the harmonic characteristics database of different 
fault loss currents of cables is formed by taking the harmonic total aberration rate, the 
fundamental content and the harmonic contents of each harmonic as the 
characteristics.Firstly, we extracted the sample data of the loss currents in the 
database to form the sample data set of the wavelet singular entropy and S-SVM 
model. Then some data in the sample data set are randomly extracted as the training 
sample set, and the rest of the data in the sample data set are used as the test 
sample set. finally, different ratios of the training set to the test set are set, and 
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different numbers of test samples are taken to identify the deterioration of cables with 
the wavelet singular entropy and the S-SVM model trained in the above steps. red 
part indicates the classification of the predicted test set, and blue part indicates the 
classification of the actual test set. red part indicates the classification of the predicted 
test set, and blue part indicates the classification of the actual test set. red part 
indicates the classification of the actual test set. The red part indicates the 
classification of the predicted test set, and the blue part indicates the classification of 
the actual test set, and the coincidence of the red part and the blue part indicates that 
the test set data matches with the prediction result, and the prediction result is 
accurate, and vice versa.The accuracy results of the wavelet singular entropy and S-
SVM models with different ratios of the training set to the test set are shown in Fig. 5, 
and the results of the accuracy results of the models with the ratio of the training set to 
the test set 6:4, 7:3, 8:2, and 9:1 are shown in Figs. 5(a) to (d) respectively. Vertical 
coordinates 1, 2, 3 and 4 indicate the degradation of insulator, shield, protective layer 
and cable connector, respectively.When the ratio of training set to test set is 6:4, there 
are 12 groups of prediction failures, 6 groups of samples predicted the protective layer 
to be insulator, and 4 groups of samples predicted the shield to be insulator, with an 
identification accuracy of 93.93%.When the ratio of training set to test set is 7:3, there 
are 3 groups of samples predicted the protective layer sample to be insulator, with an 
identification accuracy of 93.93%. When the ratio of training set to test set is 7:3, there 
are 3 groups of protective layer samples predicted to be shielding layer and 2 groups 
of shielding layer samples predicted to be insulators, the recognition accuracy is 
94.38%. when the ratio of training set to test set is 8:2, there are 1 group of protective 
layer and 1 group of shielding layer samples predicted to be insulators, the recognition 
accuracy is 96.58%. when the ratio of training set to test set is 9:1, there is only 1 
group of protective layer sample predicted to be insulators, the recognition accuracy is 
97.36%. The more training samples, the higher the accuracy of wavelet singular 
entropy and S-SVM model in recognizing different cable line degradation, and the 
recognition rate is above 93%, which indicates that this model can well identify the 
categories of cable line degradation. 
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Figure 5 Results of different training sets and test sets 

3.2. ANALYSIS OF INTELLIGENT DETECTION RESULTS OF 
CABLE SHORT-CIRCUIT FAULTS 

In order to provide data support for cable fault diagnosis, this paper adopts the 
10KV cable line model to construct the fault data set, and utilizes the electrical 
components in the tool library to build the simulation circuit. 

3.2.1. CABLE SHORT CIRCUIT FAULT ANALYSIS 

Cable short-circuit fault is the largest proportion of cable faults occurring, cable a 
phase connected to another phase or one of the phases connected to the earth is 
called a short-circuit fault, in the case of mixed faults do not take into account the 
occurrence of 10 types of faults may occur: A_G, B_G, C_G were A-phase, B-phase 
and C-phase ground faults, AB, AC, BC, respectively, on behalf of AB, AC two-phase 
and BC two-phase short-circuit faults, AB_G, AC_G, BC_G were AB-phase, AC phase 
and BC two-phase short-circuit ground faults, ABC is a three-phase short-circuit fault, 
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Figure 5 Results of different training sets and test sets 

3.2. ANALYSIS OF INTELLIGENT DETECTION RESULTS OF 
CABLE SHORT-CIRCUIT FAULTS 

In order to provide data support for cable fault diagnosis, this paper adopts the 
10KV cable line model to construct the fault data set, and utilizes the electrical 
components in the tool library to build the simulation circuit. 

3.2.1. CABLE SHORT CIRCUIT FAULT ANALYSIS 

Cable short-circuit fault is the largest proportion of cable faults occurring, cable a 
phase connected to another phase or one of the phases connected to the earth is 
called a short-circuit fault, in the case of mixed faults do not take into account the 
occurrence of 10 types of faults may occur: A_G, B_G, C_G were A-phase, B-phase 
and C-phase ground faults, AB, AC, BC, respectively, on behalf of AB, AC two-phase 
and BC two-phase short-circuit faults, AB_G, AC_G, BC_G were AB-phase, AC phase 
and BC two-phase short-circuit ground faults, ABC is a three-phase short-circuit fault, 
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ABC is a three-phase short circuit. AB_G, AC_G, BC_G are AB phase, AC phase and 
BC two-phase short-circuit ground faults, and ABC is three-phase short-circuit 
faults.Figure 6 shows the current waveform curves of the cable in normal operation 
and various short-circuit faults, and Fig. 6(a)~(d) shows the current waveform curves 
of the cable in normal operation, the single-phase grounded short-circuit faults, and 
two-phase indirect short-circuit current waveforms, and Fig. 6(a)~(d) shows the 
current waveform curve of the cable in normal operation, single-phase ground faults, 
and two-phase short-circuit faults, and Fig. 6(a)~(d) shows the current waveform 
curves of the cable in normal operation. Indirect ground short-circuit current waveform 
curve, three-phase ground short-circuit waveform curve. cable normal operation 
current waveform is more symmetrical, the overall current between -10K-10K 
amperes. cable short-circuit faults, short-circuit current is lower than the normal 
current. single-phase ground short-circuit, fault A-phase current in the 0.07s current is 
smaller than the non-fault B, C-phase current, and the waveform is more chaotic. two-
phase short circuit in the 0.075s, the AB phase current is lower than the non-fault C 
phase current, AB two short-circuit faults occur. three-phase short-circuit fault, in 
0.075s, the three-phase current is lower than the normal current, and the three-phase 
current sum is equal to zero. 

 

Figure 6 The current waveform of the cable's various circuited faults 
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3.2.2. HARMONIC FEATURE EXTRACTION FOR CABLE SHORT-
CIRCUIT FAULTS 

In this section of the experiment, the sampling frequency is set to 12.8kHz, the 
sampling time is 0.2s, and the fault is imposed after 0.05s of the system's normal 
operation state, each simulation samples 2780 points of voltage, each line has three 
phases, and each line collects 8670 points, i.e., the length of each sample is 8670, 
and then collects the operation state of 10 cables, 80% of them are used as training 
samples, 20% as test samples, and 18 harmonic vectors are obtained by using the 
improved HHT transform model. Figure 7 shows the energy spectrum of harmonic 
vector during various short-circuit faults of cable. 20% are used as test samples, and 
18 harmonic vectors are obtained by using the improved HHT transform model. Fig. 7 
shows the energy spectrum of harmonic vectors in various short-circuit faults of 
cables. In single-phase cable short-circuit, phase A mainly looks at the 1st and 9th 
harmonics, with the relative energy values of 0.18 and 0.12, respectively, and phases 
B and C mainly look at the 1st and 2nd harmonics, with the relative energy values of 
0.19 and 0.12, 0.24 and 0.14, respectively. Two-phase cable short-circuit mainly looks 
at the 1st and 2nd harmonics, with the relative energy values of 0.19 and 0.12, 0.24 
and 0.14, respectively. When two-phase cable is short-circuited, phase A mainly looks 
at the 18th harmonic with a relative energy value of 0.38, phase B mainly looks at the 
13th and 16th harmonics with relative energy values of 0.17 and 0.14, and phase C 
mainly looks at the 15th harmonic with a relative energy value of 0.21. When three-
phase cable is short-circuited, phase A mainly looks at the 2nd harmonic with a 
relative energy value of 0.05, phase B mainly looks at the 1st and 2nd harmonics with 
relative energy values of 0.19 and 0.12, and phase B mainly looks at the 1st and 2nd 
harmonics with relative energy values of 0.19 and 0.14, and phase C mainly looks at 
the 1st and 2nd harmonics with relative energy values of 0.19 and 0.14 respectively. 
The relative energy values are 0.19 and 0.13 for phase B, and 0.13 and 0.1 for phase 
C, mainly for the 2nd and 3rd harmonics. 

 

Figure 7 The harmonic energy spectrum of all kinds of short-circuit failures of the cable 
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3.2.2. HARMONIC FEATURE EXTRACTION FOR CABLE SHORT-
CIRCUIT FAULTS 

In this section of the experiment, the sampling frequency is set to 12.8kHz, the 
sampling time is 0.2s, and the fault is imposed after 0.05s of the system's normal 
operation state, each simulation samples 2780 points of voltage, each line has three 
phases, and each line collects 8670 points, i.e., the length of each sample is 8670, 
and then collects the operation state of 10 cables, 80% of them are used as training 
samples, 20% as test samples, and 18 harmonic vectors are obtained by using the 
improved HHT transform model. Figure 7 shows the energy spectrum of harmonic 
vector during various short-circuit faults of cable. 20% are used as test samples, and 
18 harmonic vectors are obtained by using the improved HHT transform model. Fig. 7 
shows the energy spectrum of harmonic vectors in various short-circuit faults of 
cables. In single-phase cable short-circuit, phase A mainly looks at the 1st and 9th 
harmonics, with the relative energy values of 0.18 and 0.12, respectively, and phases 
B and C mainly look at the 1st and 2nd harmonics, with the relative energy values of 
0.19 and 0.12, 0.24 and 0.14, respectively. Two-phase cable short-circuit mainly looks 
at the 1st and 2nd harmonics, with the relative energy values of 0.19 and 0.12, 0.24 
and 0.14, respectively. When two-phase cable is short-circuited, phase A mainly looks 
at the 18th harmonic with a relative energy value of 0.38, phase B mainly looks at the 
13th and 16th harmonics with relative energy values of 0.17 and 0.14, and phase C 
mainly looks at the 15th harmonic with a relative energy value of 0.21. When three-
phase cable is short-circuited, phase A mainly looks at the 2nd harmonic with a 
relative energy value of 0.05, phase B mainly looks at the 1st and 2nd harmonics with 
relative energy values of 0.19 and 0.12, and phase B mainly looks at the 1st and 2nd 
harmonics with relative energy values of 0.19 and 0.14, and phase C mainly looks at 
the 1st and 2nd harmonics with relative energy values of 0.19 and 0.14 respectively. 
The relative energy values are 0.19 and 0.13 for phase B, and 0.13 and 0.1 for phase 
C, mainly for the 2nd and 3rd harmonics. 

 

Figure 7 The harmonic energy spectrum of all kinds of short-circuit failures of the cable 
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3.2.3. IDENTIFICATION AND DETECTION RESULTS OF CABLE 
SHORT-CIRCUIT FAULTS 

This section extracts local features of the input target based on wavelet singular 
entropy and S-SVM model, achieving target detection and improving diagnostic 
efficiency. Figure 7 shows the confusion matrix of the cable fault diagnosis model, 
where the vertical axis represents the true category of the cable fault signal and the 
horizontal axis represents the predicted category of the network for the cable fault 
signal, The diagonal values on the matrix represent the probability of correctly 
classifying cable fault signals. Wavelet singular entropy and S-SVM models can fully 
identify 10 types of cable short circuit faults. For A_ G, B_ G, C_ G, AB, AC, BC, AB_ 
G, AC_ G, BC_ The correct classification probabilities for 10 types of short-circuit 
faults, including G and ABC, are 0.94, 0.95, 0.96, 0.96, 0.98, 0.99, 0.94, 0.92, and 1, 
respectively. Although the correct classification probability for BC phase short-circuit 
grounding is relatively low, the overall probability is above 90%, indicating that the 
diagnosis of cable faults based on wavelet singular entropy and S-SVM model is 
completely feasible 

 

Figure 8 Confusion matrix of cable fault diagnosis model 
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3.3. ANALYSIS OF INTELLIGENT DETECTION RESULTS OF 
CABLE FAULTS 

In order to verify the diagnostic effect of wavelet singular entropy and S-SVM model 
on all faults of cables, 180 samples are selected for test experiments in this section. 
The maximum error of wavelet singular entropy and S-SVM model on the test 
samples is 0.5329, only two samples have the absolute error value more than 0.5, 
and the other samples have the absolute error value lower than 0.5, and the average 
error is 0.1124.Among 180 sets of test samples, the correct rate of wavelet singular 
entropy and S-SVM model to diagnose various cable faults reached 98.04%, and the 
performance is good. In 180 sets of test samples, the correct rate of the wavelet 
singular entropy and S-SVM model in diagnosing various cable faults reaches 
98.04%, which is good, and the wavelet singular entropy and S-SVM model can be 
used in the actual cable fault diagnosis. 

 
Figure 9 Wavelet singular entropy and S-SVM model diagnose cable fault curve 
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In the detection of cable short circuit faults, the current of different short circuit 
faults in the cable is lower than the normal current, and in the case of three-phase 
short circuit faults, the three-phase currents add up to 0. For the extraction of the 
different short circuit current harmonics, in the case of a single-phase short circuit in 
the cable, the operating state of phases A, B, and C is shown in the first and ninth, 
first and second, and first and second harmonics of the current respectively, in the 
case of a two-phase short circuit in the cable, the operating state of phases A, B, and 
C is shown in the 18th, 13th, and 16th, and 15th harmonics of the current respectively. 
When three-phase cable is short-circuited, the operating states of phases A, B and C 
are characterized by 2, 1 and 2, 2 and 3 harmonic vectors, respectively. The wavelet 
singularity algorithm and S-SVM algorithm have an accuracy of more than 92% in 
identifying 10 different cable short-circuit faults, such as A_G, B_G, C_G, AB, AC, BC, 
AB_G, AC_G, BC_G, ABC, and so on. 

Overall for cable fault detection, the wavelet singularity algorithm and S-SVM 
algorithm have reached 98.04% correct rate for detecting all kinds of pegged accounts 
of cables, and the error value is only more than 0.5 for two groups of data out of 180 
groups of sample data. The improved HHT transform model and the wavelet singular 
entropy and S-SVM models proposed in this paper have high accuracy and 
practicability, and provide a a new method. 
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