improves the ability of anti-noise interference. The development of this technology will
bring important practical application value to the fault detection and maintenance of
the power system, and help to improve the reliability and stability of the power system.
REFERENCES
(1) Nguyen, T. H., & Lee, D. C. (2017). Protection of the MMCs of HVDC transmission
systems against DC short-circuit faults. Journal of Power Electronics.
(2) Lee, S. J., Kang, S. Y., Park, M., Won, D. Y., & Yang, H. S. (2020). Performance analysis
of real-scale 23 kV/60 MVA class tri-axial HTS power cable for real-grid application in
Korea. Energies, 13(8), 2053.
(3) Chen, Z., Kleijn, R., & Lin, H. X. (2022). Metal requirements for building electrical grid
systems of global wind power and utility-scale solar photovoltaic until 2050.
Environmental Science & Technology.
(4) Khalil, A. R., Howard, I. M., Forbes, G. L., Sultan, I. A., & McKee, K. K. (2017). Design
and installation of subsea cable, pipeline and umbilical crossing interfaces. Engineering
Failure Analysis.
(5) Reda, A., Abu-Siada, A., Howard, I. M., & McKee, K. K. (2018). A testing platform for
subsea power cable deployment. Engineering Failure Analysis, 96, 142-157.
(6) Ulku, I., & Alabas-Uslu, C. (2020). Optimization of cable layout designs for large offshore
wind farms. International Journal of Energy Research, 44(8).
(7) Kwon, G.-Y., Lee, C.-K., Shin, & Yong-June. (2019). Diagnosis of shielded cable faults
via regression-based reflectometry. IEEE Transactions on Industrial Electronics.
(8) Brothers, S. (2018). Finding fault with cabling connections. Electrical Engineering (OCT.),
8-8.
(9) Suyang, Wang, Jianmei, Chuang, Zhang, & Yang, et al. (2019). Synchronous online
diagnosis of multiple cable intermittent faults based on chaotic spread spectrum
sequence. IEEE Transactions on Industrial Electronics, 66(4).
(10) Torwelle, P., Bertinato, A., Raison, B., Le, T. D., & Petit, M. (2022). Fault current
calculation in MTDC grids considering MMC blocking. Electric Power Systems Research
(Jun.), 207.
(11) Li, G., Chen, J., Li, H., Hu, L., Zhou, W., & Zhou, C., et al. (2022). Diagnosis and location
of power cable faults based on characteristic frequencies of impedance spectroscopy.
Energies, 15.
(12) Li, M., Bu, J., Song, Y., Pu, Z., & Xie, C. (2021). A novel fault location method for power
cables based on an unsupervised learning algorithm. Energies, 14(4), 1164.
(13) Sommervogel, L. (2020). Various models for faults in transmission lines and their
detection using time domain reflectometry. Progress in Electromagnetics Research C,
103, 123-135.
(14) Tian, Y., Zhao, Q., Zhang, Z., Li, L., & Crossley, P. (2018). Current-phase-comparison-
based pilot protection for normally closed-loop distribution network with underground
cable. International Transactions on Electrical Energy Systems, 28(9), e2733.1-
e2733.19.
(15) Li, Z., Yang, H., Yang, F., Tan, T., Lu, X., & Tian, J. (2022). An infrared image based state
evaluation method for cable incipient faults. Electric Power Systems Research.
https://doi.org/10.17993/3ctecno.2024.v13n1e45.35-55
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.45 | Iss.13 | N.1 April - June 2024
54