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ABSTRACT 
Let  denote the chromatic number of a graph . Under the proper coloring of a 
graph G with  colors, we define a signed graph from it. The obtained signed 
graph is defined as parity colored signed graph and denoted as . The signs of 
edges of  are defined from the colors of the vertices as  if the colors on the 
adjacent vertices are of the same (opposite) parity. In this paper, we initiate a study on 

. We further investigate the chromatic rna number of some classes of graphs 
concerning proper coloring. 

KEYWORDS 
Signed graph, parity colored signed graph of a graph, chromatic rna number. 
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1. INTRODUCTION 

In this paper, we consider simple connected graphs. The smallest positive integer   
such that  such that  whenever ab is an edge in 

 is called the chromatic number of  and it is denoted by . 

In [7], the concept of a signed graph has been introduced. Let  be a 
signed graph with  the signature of , where  is the 
underlying graph of . The edges of  receiving  sign are called the positive 
(negative) edges of . A signed graph is all positive (negative) if all the edges of  are 
positive (negative). A homogeneous signed graph is a signed graph in which either all 
the edges are positive or all negative and heterogeneous, otherwise.   
denotes the negative (posit ive) edge set of the signed graph and 

 is the edge set. In [2], by the negation, we mean a signed 
graph  obtained  by reversing the sign of every edge . By  we 
mean the number of negat ive (posit ive) edges incident to  and 

. The positive (negative) edges in  are represented by solid 
(dashed) line segments as shown in Figure 1. The negative section of a signed  is 
the maximal connected edge-induced subgraph in  consisting of only the negative 
edges  as defined in [2]. 

Motivated by the definition of rna number [3], we initiate the concept of 
chromatic rna of . For a detailed study of the rna number, we refer to [4,9–11]. The 
signed graphs  and  are isomorphic if there exists a one-to-
one correspondence between the vertex sets which preserves adjacency and signs 
on it. 

A triangular Snake graph  is obtained from a path on  vertices in which 
every edge is replaced by a triangle. The sign of a cycle (path) in a signed graph is 
the product of the signs of its edges. A cycle is said to be positive if the product of the 
signs of the edges is positive or the cycle has an even number of negative edges. A 
signed graph  is said to be balanced if all the cycles in  are positive [7]. Therefore, 
acyclic signed graphs are always balanced. Two vertices  and  of  are of the 
same parity if their colors  and  are both odd or both even and of opposite 
parity otherwise [4]. 

Motivated by the concept of set coloring in signed graphs [1] and induced signed 
graphs [5], we initiate a study on  of a graph. We refer to [6,8,12,13] for our study. 
Throughout the paper, by  we mean parity colored signed graph of a graph. 

1.1. PRELIMINARIES 

Definition 1.1. Let  be a set of colors and  be 
an onto function. Then parity colored signed graph of a graph  ( , in short) is 
defined by taking the signature function for every edge  in  as: 

k
f : V(G) → {1,2,…, k} f (a) ≠ f (b)

G G χ (G)

S = (G, σ)
σ : E(G) → { + , − } G G
S G +( − )
S S

E−(S )(E+(S ))
E(S ) = E−(S ) ∪ E+(S )

η(S ) S S d−(v)(d+(v))
v

d(v) = d−(v) + d+(v) S
S

S
S

σ−(G)
G

S = (G, σ) S′ = (H, σ′ )

TS(L) L + 1

S S
u v Sc

c(u) c(v)

Sc
Sc

A = {1,2,…, χ (G)} c : V(G) → A
G Sc

uv G
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Example 1. In Figure 1(a) we show a proper coloring of a graph and in Figure 1(b) 
its . 

 

Figure 1. A graph with its Sc 

Definition 1.2. The chromatic rna number of a graph , denoted by , is the 
smallest number of negative edges in  with respect to any proper coloring of . 

2. RESULTS ON Sc 

Now we investigate some properties of . 

Observation 2.1.  is positive homogeneous if  
. 

From the definition of , we can see that it is not unique. Does there exist a graph 
whose Sc is unique? The answer is yes as shown below. 

Proposition 2.2.  on a complete graph is unique up to isomorphism. 

Proof. The chromatic number of  is n with  as the 
vertex coloring. Since  is uniquely colored under , there is exactly one  on  up 
to isomorphism. 

Theorem 2.3. Every non-trivial  of order  will have at least one negative edge. 

Proof. Let G be a non-trivial graph with  and . 
Therefore, . If , then there exist at least two vertices colored 
with  and . Therefore,  will have a negative edge between these two vertices. So 
let . Under the proper coloring of the graph, there exists a vertex  

colored with  which is adjacent to vertices colored with . 
If the vertex  is colored with an odd (even) number, then the edge between  and the 
vertex colored with  is a negative edge in . Hence the result follows. 

σc(uv) = { + , c(u) and c(v) are both odd or both even 
− ,  Otherwise. 

Sc

G σ−
c (G)

Sc G

Sc

Sc ∀vi ∈ V (Sc), c (vi) ≡ 1(mod2)
(c (vi) ≡ 0(mod2))

Sc

Sc

Kn c : V (Kn) → {1,2,…, n}
Kn c Sc Kn

Sc n

χ (G) = k ≤ n |V(G) | ≥ 2
χ (G) = k ≥ 2 χ (G) = 2

1 2 Sc
χ (G) = k > 2 vi

m {1,2,…m − 1,m + 1,…k}
vi vi

2(1) Sc
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The following theorem gives the balanced nature of . 

Theorem 2.4.  of graph  is balanced. 

Proof. Consider  of  and let  represent the colors with odd (even) positive 
numbers. If  is acyclic, then obviously  is balanced. Assume that  contains at 
least one cycle. Consider an arbitrary cycle  in . Without loss of generality, let  

be the cycle on the vertices . Consider a path  on the vertices  

of the cycle . Then, there are two cases: 

Case 1: Under the function , if the end vertices of  are colored with numbers of 
the same parity, then  of  will have an even number of negative edges, and the 
edge between  and  will receive a positive sign. We can observe that when 
vertices of opposite colors are adjacent in a cycle, it will always induce two negative 
edges as seen in Figure 2. Therefore the cycle has an even number of negative 
edges. 

 

Figure 2.  on  

Case 2: Under the function , if the end vertices of  are colored with numbers of 
opposite parity, then  of  will have an odd number of negative edges and the edge 
between  and  will receive a negative sign as seen in Figure 3. 

 

Figure 3.  on  

In both cases, any cycle in  has an even number of negative edges. Therefore,  

is always balanced. 

The converse need not be true as we know that positive homogeneous signed 
graphs are always balanced. However,  can never be a positive homogeneous 
signed graph. This observation leads to the next result. 

Sc

Sc G

Sc G oi(ei)
G Sc Sc

Ck G Ck
v1v2…vkv1 Pk v1v2…vk

Ck

c Pk
Sc Pk

v1 vk

Sc C7

c Pk
Sc Pk

v1 vk

Sc C7

Sc Sc

Sc
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The converse need not be true as we know that positive homogeneous signed 
graphs are always balanced. However,  can never be a positive homogeneous 
signed graph. This observation leads to the next result. 

Sc

Sc G
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Ck G Ck
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Theorem 2.5. The negation of  is balanced if and only if the underlying graph of 
 is bipartite. 

Proof. Let  and  be the parity-colored signed graph and its negation 
respectively. Assume that  is balanced. Therefore, every cycle in  
contains an even number of negative edges. This implies Sc contains an even number 
of positive edges. From Theorem 2.4, every cycle in  contains an even number of 
negative edges. Now, every cycle of  has an even number of negative and positive 
edges. Therefore, the underlying graph of  is bipartite. 

Assume  is a bipartite graph. Therefore, every cycle in  is of even length. From 
Theorem 2.4, every cycle in  contains an even number of negative edges. Hence 

 is balanced. 

Remark 1. A subsigned graph of  need not be . 

 
Figure 4 

The underlying graph of the signed graph in Figure 4(a) has chromatic number 3. 
Therefore, the  in Figure 4(a) has at least one positive edge. Furthermore, the 
underlying graph of the signed graph in Figure 4(b) has chromatic number 2. 
Therefore, the  of Figure 4(b) is negative homogeneous. In Figure 4(a), the edges 

 and  will receive a positive sign. However, the subsigned graph with the same 
vertices will receive negative signs only since its chromatic number is 2. Therefore, 
the subsigned graph of  need not be . 

Remark 2. The parity-colored signed graphs of graph  need not be isomorphic. 

The parity-colored signed graphs of Figure 5(a) are shown in Figure 5(b) and 
Figure 5(c). We can observe that they are not isomorphic to each other. 

Sc
Sc

Sc η (Sc)
η (Sc) η (Sc)

Sc
Sc

Sc

G G
Sc

η (Sc)
Sc Sc

Sc

Sc
v3v4 v4v6

Sc Sc

G
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Figure 5 

3. CHARACTERIZATION OF Sc 

In this section, we will characterize  of some classes of graphs like bipartite 
graphs, cycles, and wheels. We also explore the ’chromatic rna’ number of some 
classes of graphs concerning proper coloring. 

We have already noted that there exists at least one negative edge in . 
Therefore, it is impossible to have a positive homogeneous . So we aim at finding a 
negative homogeneous . 

Theorem 3.1.  is negatively homogeneous if and only if its underlying graph is 
bipartite. 

Proof. Assume that  is negatively homogeneous. From the balanced nature of , 
its vertices can be partitioned into two subsets such that the edges between them are 
negative. Therefore, the vertices can be colored with two colors. This implies that the 
underlying graph of  is bipartite. 

The converse is easy to see as  is bipartite and we need only two colors to color 
its vertices and get a negative homogeneous signed graph. Hence the result.  

Corollary 3.2.  of  is negative homogeneous if and only if  is  and 
 being  or bipartite graph. 

Corollary 3.3.  of  is negative homogenous if and only if  is  and  
being . 

We have seen that  is balanced. Next, we discuss the nature of a negative 
section in  of a cycle. 

Proposition 3.4. The negative section in  of a cycle  is always of even length 
or a whole cycle of even length. 

Proof. We know that , when k is even (odd). Therefore, there exists 
at least one vertex colored with  in . In the proper coloring of , the vertex 
colored with  is adjacent to the vertex colored with  or . This will give negative 
edges between the vertices colored with  and  or  and . Therefore, the negative 

Sc

Sc
Sc

Sc

Sc

Sc Sc

Sc

G

Sc G1 ∘ G2 G2 Kn
G1 Km

Sc G1 + G2 G1 Kn G2
Km

Sc
Sc

Sc Ck

χ (Ck) = 2(3)
2 Ck Ck

2 1 3
1 2 2 3
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section of  is of even length and when k is even the cycle will have all negative 
edges.  

The next theorem gives the characterization of the signed cycle which is the Sc of 
its underlying graph. 

Theorem 3.5. A signed cycle  on k vertices is  if and only if  satisfies any 
one of the following: 

(i)  is negatively homogeneous for even . 

(ii)  is heterogeneous for odd  with length of each negative section even. 

Proof. In , the number of negative sections is equal to the number of positive 

sections. Let , be the negative (positive) sections in a signed 

cycle. 

Case 1: For even ,  is a bipartite graph. From Theorem 3.1,  of  is negative 
homogeneous. Hence (i) follows. 

Case 2: For odd ,  is heterogeneous. From Proposition 3.4, the length of each 
negative section is even. Hence (ii) follows. 

 

Figure 6.  of  and  

Sufficiency is easy to see in Figure 6. 

The next theorem gives the characterization of  on a wheel having an odd 
number of vertices. 

Theorem 3.6. A signed wheel  for an odd integer  is  if and 
only if  satisfies any one of the following: 

Ck

Ck Sc Ck

Ck k

Ck k

Ck

lni (lpi) ,1 ≤ i ≤ ⌊ k
2 ⌋

k Ck Sc Ck

k Ck

Sc C4 C7

Sc

Wn = Cn−1 + K1 n Sc
Wn
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(i)  is positive homogeneous and . 

(ii)  is negative homogeneous,  and 

the distance between the vertices which are the end vertices of the positive 
edge lying on the Cn−1 is two. 

Proof. We know that  (  is odd). The vertices of  can be colored in 
two ways such that the edges of  are either positive (negative) homogeneous. If 
the vertices on the cycle are colored with 1 and 3 (1 and 2 or 2 and 3), then  is 
positive (negative) homogeneous respectively. 

Case 1: If  is positive homogeneous, the vertex of  will be colored with 2 
only and the edges joining K1 to all the vertices of  are negative. 

Therefore, . Thus (i) holds. 

Case 2: If  is negative homogeneous, then the vertex of  can be colored 
with 1 or 3. Then the edges joining  to all the vertices of  are negative (positive) 
depending upon the colors on the  and it is easy to see that the distance between 
any two vertices lying on  which have a positive edge incident on them is two. We 

can observe that  and . 

Therefore, . Thus (ii) holds. 

 

Figure 7.  of  

Sufficiency part is easy to see in Figure 7. 

Cn E− (Wn) = E+ (Wn)

Cn−1 E− (Wn) | − |E+ (Wn) = n − 1

χ (Wn) = 3 n Cn−1
Cn−1

Cn−1

Cn−1 K1
Cn−1

E− (Wn) = E+ (Wn)
Cn−1 K1

K1 Cn−1
Cn−1

Cn−1

E− (Wn) = n − 1 +
n − 1

2
E+ (Wn) =

n − 1
2

E− (Wn) | − |E+ (Wn) = n − 1

Sc W7
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Theorem 3.7. A signed graph on  is  if and only if the following conditions 
hold: 

(i) Every cycle in  has exactly two negative edges and 

(ii) For a vertex  whose , its  is either 4 or 2, and 
 is due to two negative edges incident at  lying in two adjacent 

triangles. 

Proof. Assume that  is . We know that . From the definition 
of , each triangle of  will have 2 negative edges. Hence (i) follows. 

Now we prove (ii), let vertex  whose  has . That 
is, there is an edge in a triangle whose end vertices receive same color. This is a 
contradiction. Similarly we can show that  and . Therefore,  
can be  or . In other words,  or . If  and two negative edges 
lie in the same triangle then the adjacent triangle will have exactly one negative edge, 
which is not possible. Thus  is due to the negative edges lying in two 
adjacent triangles. When , the proof is easy to see. Thus (ii) follows. 

 

Figure 8.  of  

Further sufficiency is easy to see.  of  is shown in Figure 8. Hence the 
proof. 

4. CHROMATIC RNA NUMBER 

Definition 4.1. The chromatic rna number of a graph , denoted by , is the 
smallest number of negative edges in  with respect to any proper coloring of . 

We investigate the ‘chromatic rna’ number of bipartite graphs, complete graphs, 
multipartite graphs, and cycle-related graphs. 

Proposition 4.2. For any bipartite graph . 

Proof. From Theorem 3.1,  of a bipartite graph is negative homogeneous. 
Therefore, . 
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Proof. From Proposition 2.2, the  of a complete graph,  is unique up to 
isomorphism. We know that . Let  be the set of vertices colored with 
even (odd) positive integers from the set . The edges of  that occur 
across the set  receive a negative sign. That is, the total number of negative 
edges is . 

Case 1: When  is even, . Hence, . 

Therefore, . 

Case 2: When  is odd, . Hence, . 

Therefore, . Hence de proof 

Proposition 4.4. For any complete r-partite graph , 

  

Proof. From Proposition 2.2, the Sc of a complete r-partite graph,  is unique 
up to isomorphism and its chromatic number is . Let  be the set of vertices 
colored with even (odd) positive integers from the set . The edges of 

 will receive a negative sign if and only if they occur between the sets  and 
. Since each set has n elements, the total number of negative edges is . 

Case 1: When  is even, . Hence, . 

Therefore, . 

Case 2: When  is odd, . Hence, . 

Therefore, . Hence the proof. 

We observe that the chromatic rna number of bipartite graphs, complete graphs, 
and complete multipartite graphs with respect to proper coloring is equal to the 
number of negative edges in them respectively. Next, we discuss a class of graphs for 
which it does not hold true. 

Proposition 4.5. For any cycle , 
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Proof. For any cycle , we have the following two cases: 

Case 1: The cycle on the even number of vertices is a bipartite graph. From 
Theorem 3.5, the  of the cycle is negatively homogeneous. 

Therefore,  (  is even). 

Case 2: Let the vertices of the cycle be vi such that  and 
. From Theorem 2.3 and Theorem 2.4,  is balanced, 

and  will have at least one negative edge. Therefore, at least two negative edges 
exist in . Let the edges be v1vk, and . Since the chromatic number of the 
odd cycle is three, let  be the vertex coloring function. 
Consider the following coloring. 

The vertices  are colored with . The vertices  are 
colored with , and the vertex  is colored with . This coloring gives two negative 
edges in the . Therefore,  (  is odd). 

Proposition 4.6. Le  is a graph having k cycles with exactly one vertex in 
common and the length of each cycle is greater than or equal to . If m cycles are of 
odd length and the remaining cycles are of even length then, 

  

Proof. Consider a graph  having k cycles with exactly one vertex in common. We 
arrange the cycles in such a way that the first m cycles are of odd length and the 
remaining cycles are of even length. 

Case 1: If  contains cycles only on an even number of vertices, then  is a 
bipartite graph. From Theorem 3.5, . 

Case 2: If  contains cycles only on the odd number of vertices, then . 
From Theorem 3.5, cycles on the odd number of vertices will have a minimum of two 
negative edges. From Proposition 4.5, . 

Case 3: If  contains cycles on odd and even numbers of vertices, then clearly 
. In this case cycles on even number vertices can be colored with 1 and 3 

such that they have zero negative edges. From Proposition 4.5, cycles on the odd 
number of vertices will have a minimum of two negative edges. Therefore, 

. Hence the proof.  

Proposition 4.7. For a triangular snake graph . 

The following result gives the characterization of a graph with respect to a specific 
rna number associated with it. 
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Proposition 4.8.  if and only if  is . 

We know that there exists more than one graph whose rna number is , for 
. Is it possible to construct  with a given rna number? The answer is yes. 

Theorem 4.9. There exists  for every natural number n such that σc−(G) = n. 

Proof. For every n ∈ N, consider a path  on  vertices. From Theorem 3.1, 
the path is always negative homogeneous. Therefore, there exists  with a given rna 
number. 

We also have some other graphs such as  with fixed rna numbers. 

5. CONCLUSION 

In the paper, we have initiated a study on . We have given the characterization of 
 on some classes of graphs. We have investigated the rna number with respect to 

the proper coloring of some classes of graphs and we have also shown the existence 
of graphs with a given rna number. 
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