the previous layer's encoder is used as the source for all keys, values, and queries.
The encoder's architecture allows for all of the previous layer's positions to be
serviced from any given place. Like the encoder, the decoder has self-attention layers
that allow any location in the decoder to pay attention to all other positions. The auto-
regressive property can only be preserved by blocking leftward information flow in the
decoder.
7. FUTURE SCOPE
Based on what we learned from our analysis, we conclude that Transformers
networks, modified to improve their baseline architecture of input encodings and
overall models, produce the best results. With transformers, one can interpret which
parts of the input sequence are most crucial to generating the output thanks to their
attention mechanisms. This allows transformers to achieve state-of-the-art results in
the case of trajectory prediction and scale to a wide range of tasks.
REFERENCES
(1) Bansal, P., & Kockelman, K. M. (2017). Forecasting Americans’ long-term
adoption of connected and autonomous vehicle technologies. Transportation
Research Part A: Policy and Practice, 95, 49–63. https://doi.org/10.1016/
J.TRA.2016.10.013
(2) Chong, Y. L., Lee, C. D. W., Chen, L., Shen, C., Chan, K. K. H., & Ang, M. H.
(2022). Online Obstacle Trajectory Prediction for Autonomous Buses. Machines,
10(3), 1–19. https://doi.org/10.3390/machines10030202
(3) Clements, L. M., & Kockelman, K. M. (2017). Economic Effects of Automated
Vehicles. Https://Doi.Org/10.3141/2606-14, 2606(1), 106–114. https://doi.org/
10.3141/2606-14
(4) Cohen, T., & Rabinovitch, A. L. (2017). Intel’s $15 billion purchase of Mobileye
shakes up driverless car sector | Reuters. Technology, Media & Telecom-
Innovation. https://www.reuters.com/article/us-intel-mobileye-idUSKBN16K0ZP
(5) CVPR 2020 Open Access Repository. (n.d.). Retrieved March 20, 2023, from
https://openaccess.thecvf.com/content_CVPR_2020/html/
Sun_Scalability_in_Perception_for_Autonomous_Driving_Waymo_Open_Datase
t_CVPR_2020_paper.html
(6) Ettinger, S., Cheng, S., Caine, B., Liu, C., Zhao, H., Pradhan, S., Chai, Y., Sapp,
B., Qi, C., Zhou, Y., Yang, Z., Chouard, A., Sun, P., Ngiam, J., Vasudevan, V.,
McCauley, A., Shlens, J., & Anguelov, D. (2021). Large Scale Interactive Motion
Forecasting for Autonomous Driving: The WAYMO OPEN MOTION DATASET.
Proceedings of the IEEE International Conference on Computer Vision, 9690–
9699. https://doi.org/10.1109/ICCV48922.2021.00957
(7) Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous
vehicles: opportunities, barriers and policy recommendations. Transportation
Research Part A: Policy and Practice, 77, 167–181. https://doi.org/10.1016/
J.TRA.2015.04.003
https://doi.org/10.17993/3ctecno.2023.v12n2e44.49-63
(8) Gressenbuch, L., Esterle, K., Kessler, T., & Althoff, M. (2022). MONA: The
Munich Motion Dataset of Natural Driving. IEEE Conference on Intelligent
Transportation Systems, Proceedings, ITSC, 2022-Octob, 2093–2100. https://
doi.org/10.1109/ITSC55140.2022.9922263
(9) Gu, J., Sun, Q., & Zhao, H. (2021). DenseTNT: Waymo Open Dataset Motion
Prediction Challenge 1st Place Solution. 1–5. http://arxiv.org/abs/2106.14160
(10) Hu, X., Zheng, Z., Chen, D., Zhang, X., & Sun, J. (2022). Processing, assessing,
and enhancing the Waymo autonomous vehicle open dataset for driving
behavior research. Transportation Research Part C: Emerging Technologies,
134(December). https://doi.org/10.1016/j.trc.2021.103490
(11) Hula, A., de Zwart, R., Mons, C., Weijermars, W., Boghani, H., & Thomas, P.
(2023). Using reaction times and accident statistics for safety impact prediction
of automated vehicles on road safety of vulnerable road users. Safety Science,
162. https://doi.org/10.1016/j.ssci.2023.106091
(12) LaMondia, J. J., Fagnant, D. J., Qu, H., Barrett, J., & Kockelman, K. (2016).
Shifts in long-distance travel mode due to automated vehicles: Statewide mode-
shift simulation experiment and travel survey analysis. Transportation Research
Record, 2566, 1–10. https://doi.org/10.3141/2566-01
(13) Leon, F., & Gavrilescu, M. (2021). A review of tracking and trajectory prediction
methods for autonomous driving. Mathematics, 9(6), na. https://doi.org/10.3390/
math9060660
(14) Mahmoud, A., Hu, J. S. K., & Waslander, S. L. (2023). Dense Voxel Fusion for
3D Object Detection (pp. 663–672).
(15) May, A. D., Shepherd, S., Pfaffenbichler, P., & Emberger, G. (2020). The
potential impacts of automated cars on urban transport: An exploratory analysis.
Transport Policy, 98, 127–138. https://doi.org/10.1016/j.tranpol.2020.05.007
(16) Nayakanti, N., Al-Rfou, R., Zhou, A., Goel, K., Refaat, K. S., & Sapp, B. (2022).
Wayformer: Motion Forecasting via Simple & Efficient Attention Networks. 1–20.
http://arxiv.org/abs/2207.05844
(17) Notz, D., Becker, F., Kuhbeck, T., & Watzenig, D. (2020). Extraction and
Assessment of Naturalistic Human Driving Trajectories from Infrastructure
Camera and Radar Sensors. IEEE International Conference on Automation
Science and Engineering, 2020-Augus, 455–462. https://doi.org/10.1109/
CASE48305.2020.9216992
(18) Shaheen, S. A., Cohen, A. P., & Martin, E. (2010). Carsharing parking policy.
Transportation Research Record, 2187, 146–156. https://doi.org/
10.3141/2187-19
(19) Shi, S., Jiang, L., Dai, D., & Schiele, B. (2022). MTR-A: 1st Place Solution for
2022 Waymo Open Dataset Challenge -- Motion Prediction. http://arxiv.org/abs/
2209.10033
(20) Sun, P., Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo,
J., Zhou, Y., Chai, Y., Caine, B., Vasudevan, V., Han, W., Ngiam, J., Zhao, H.,
Timofeev, A., Ettinger, S., Krivokon, M., Gao, A., Joshi, A., … Anguelov, D.
(2020). Scalability in Perception for Autonomous Driving: Waymo Open Dataset
(pp. 2446–2454). http://www.waymo.com/open
https://doi.org/10.17993/3ctecno.2023.v12n2e44.49-63
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.44 | Iss.12 | N.2 April - June 2023
61