and Mappinge. Journal of Physics: Conference Series, 1881(4), 042071. https://
doi.org/10.1088/1742-6596/1881/4/042071
(3) Xc, A., Bta, B., Yan, L. A., Xx, A., Lei, L. C., Hk, A., & Jl, A. (2019). Dynamic
recrystallization behavior of the Ti–48Al–2Cr–2Nb alloy during isothermal
hot deformation. Progress in Natural Science: Materials International, 29(5),
587-594. https://doi.org/10.1016/j.pnsc.2019.08.004
(4) Lu, X., Wang, F. R., Xue, L., Feng, Y., & Liang, S. Y. (2019). Investigation of
material removal rate and surface roughness using multi-objective
optimization for micro-milling of inconel 718. Industrial Lubrication and
Tribology, 71(6). https://doi.org/10.1108/ILT-07-2018-0259
(5) Beruvides, G., Casta?O, F., Quiza, R., & Haber, R. E. (2016). Surface
roughness modeling and optimization of tungsten–copper alloys in micro-
milling processes. Measurement, 246-252. https://doi.org/10.1016/
j.measurement.2016.03.002
(6) Shi, Z. L., Gong, Y., Cao, M., & Xiao, S. (2010). Discussion on the Application
of Surveying and Mapping Technology in the Internet of Things Times.
Modern Surveying and Mapping, 65(4), 503-515. https://doi.org/10.1016/
j.neuron.2010.01.035
(7) Shi, X., & Wang, B. (2021). Application of New Surveying and Mapping
Technology in the Construction of Smart City. E3S Web of Conferences,
236, 04031. https://doi.org/10.1051/e3sconf/202123604031
(8) Wang, J., Ran, R., Song, Z., & Sun, J. (2017). Short-Term Photovoltaic Power
Generation Forecasting Based on Environmental Factors and GA-SVM.
Journal of Electrical Engineering & Technology, 12(1), 64-71. https://doi.org/
10.5370/JEET.2017.12.1.064
(9) Zhang, X. Y., Deng, C. H., & Chen, T. T. (2011). Ultra-Short-Term Ahead
Generating Power Forecasting for PV System Based on Markov Chain for
Error Series. Advanced Materials Research, 347-353, 1498-1505. https://
doi.org/10.4028/www.scientific.net/AMR.347-353.1498
(10) Wang, M., Zhou, J., Gao, J., Li, Z., & Li, E. (2020). Milling Tool Wear
Prediction Method Based on Deep Learning under Variable Working
Conditions. IEEE Access, 8, 140726-140735. https://doi.org/10.1109/
ACCESS.2020.3010378
(11) Yi, S., Wang, X., & Tang, X. (2014). Deep Learning Face Representation by
Joint Identification-Verification. Advances in neural information processing
systems, 27. https://doi.org/10.48550/arXiv.1406.4773
(12) Yu, S., Zeng, W., Zhao, Y., Shao, Y., & Zhou, Y. (2012). Modeling the
Correlation of Composition-Processing-Property for TC11 Titanium Alloy
Based on Principal Component Analysis and Artificial Neural Network.
Journal of Materials Engineering & Performance, 21(11), 2231-2237. https://
doi.org/10.1007/s11665-012-0162-y
(13) Huang, Z., Wei, X., & Kai, Y. (2015). Bidirectional LSTM-CRF Models for
Sequence Tagging. Computer Science. https://doi.org/10.48550/
arXiv.1508.01991
https://doi.org/10.17993/3ctecno.2023.v12n1e43.159-174
(14) Li, M., Liu, X., & Xiong, A. (2002). Prediction of the mechanical properties of
forged TC11 titanium alloy by ANN. Journal of Materials Processing
Technology, 121(1), 1-4. https://doi.org/10.1016/S0924-0136(01)01006-8
(15) Cai, W., Zhai, B., Liu, Y., Liu, R., & Ning, X. (2021). Quadratic polynomial
guided fuzzy C-means and dual attention mechanism for medical image
segmentation. Displays, 70, 102106. https://doi.org/10.1016/
j.displa.2021.102106
(16) Miao, J., Wang, Z., Ning, X., Xiao, N., Cai, W., & Liu, R. (2022). Practical and
secure multifactor authentication protocol for autonomous vehicles in 5G.
Software: Practice and Experience. https://doi.org/10.1002/SPE.3087
(17) Liu, Z., Zhou, W., & Li, H. (2019). AB-LSTM: Attention-based Bidirectional
LSTM Model for Scene Text Detection. ACM Transactions on Multimedia
Computing Communications and Applications, 15(4), 1-23. https://doi.org/
10.1145/3356728
(18) Ning, X., Duan, P., Li, W., & Zhang, S. (2020). Real-time 3D face alignment
using an encoder-decoder network with an efficient deconvolution layer.
IEEE Signal Processing Letters, 27, 1944-1948. https://doi.org/10.1109/
LSP.2020.3032277
(19) Sagnika, S., Mishra, B., & Meher, S. K. An attention-based CNN-LSTM model
for subjectivity detection in opinion-mining. Neural Computing and
Applications, 1-14. https://doi.org/10.1007/s00521-021-06328-5
(20) Ning, X., Gong, K., Li, W., & Zhang, L. (2021). JWSAA: joint weak saliency
and attention aware for person re-identification. Neurocomputing, 453,
801-811. https://doi.org/10.1016/j.neucom.2020.05.106
(21) Shan, W. (2022). Digital streaming media distribution and transmission
process optimisation based on adaptive recurrent neural network.
Connection Science, 34(1), 1169-1180. https://doi.org/
10.1080/09540091.2022.2052264
(22) Chen, Y., Wang, L., Hu, J., & Ye, M. (2020). Vision-Based Fall Event Detection
in Complex Background Using Attention Guided Bi-directional LSTM.
https://doi.org/10.1109/ACCESS.2020.3021795
(23) Qi, F., Gao, C., Lan, W., Yue, Z., Song, T., & Li, Q. (2018). Spatio-temporal fall
event detection in complex scenes using attention guided LSTM. Pattern
Recognition Letters, S016786551830504X-. https://doi.org/10.1016/
j.patrec.2018.08.031
(24) Yan, C., Pang, G., Bai, X., Liu, C., Xin, N., Gu, L., & Zhou, J. (2021). Beyond
triplet loss: person re-identification with fine-grained difference-aware
pairwise loss. IEEE Transactions on Multimedia. https://doi.org/10.1109/
TMM.2021.3069562
(25) Nguyen, T. (2019). Spatiotemporal Tile-based Attention-guided LSTMs for
Traffic Video Prediction. https://doi.org/10.48550/arXiv.1910.11030
(26) Ying, L., Nan, Z. Q., Ping, W. F., Kiang, C. T., Pang, L. K., Chang, Z. H., Nam, L.
Adaptive weights learning in CNN feature fusion for crime scene
investigation image classification. Connection Science. https://doi.org/
10.1080/09540091.2021.1875987
https://doi.org/10.17993/3ctecno.2023.v12n1e43.159-174
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.43 | Iss.12 | N.1 January - March 2023
173