8. CONFLICT OF INTEREST
The authors declared that there is no conflict of interest.
REFERENCES
(1) Al-Hazzaa, H. M., Abahussain, N. A., Al-Sobayel, H. I., Qahwaji, D. M., &
Musaiger, A. O. (2011). Physical activity, sedentary behaviors and dietary
habits among Saudi adolescents relative to age, gender and region. The
International Journal of Behavioral Nutrition and Physical Activity, 8. https://
doi.org/10.1186/1479-5868-8-140.
(2) A, C. W., A, X. W., Jz, A., Liang, Z. A., Xiao, B. A., Xin, N. B.,... Ehd, A. (2021).
Uncertainty Estimation for Stereo Matching Based on Evidential Deep
Learning. https://doi.org/10.1016/j.patcog.2021.108498
(3) Aubert, S. (2020). Active Healthy Kids Global Alliance "Global Matrix"
Initiative: Process, Results, Impact and Evaluation. https://doi.org/10.20381/
ruor-24426.
(4) Anthamatten, P., Brink, L., Lampe, S., Greenwood, E., Kingston, B., & Nigg, C.
(2011). An assessment of schoolyard renovation strategies to encourage
children's physical activity. International Journal of Behavioral Nutrition &
Physical Activity, 8(1), 27. https://doi.org/10.1186/1479-5868-8-27.
(5) Aguilar-Farias, N., Cortinez-O'Ryan, A., Sadarangani, K. P., Oetinger, A. V., &
Cristi-Montero, C. (2016). Results From Chile's 2016 Report Card on
Physical Activity for Children and Youth. Journal of Physical Activity and
Health, 13(2), S117-S123. https://doi.org/10.1123/jpah.2016-0314.
(6) Russell, R. D. (1975). Health Education. Project of Joint Committee on Health
Problems in Education of the National Education Association and the American
Medical Association. communication quarterly.
(7) Miao, J., Wang, Z., Ning, X., Xiao, N., Cai, W., & Liu, R. (2022). Practical and
secure multifactor authentication protocol for autonomous vehicles in 5G.
Software: Practice and Experience. https://doi.org//10.1002/SPE.3087
(8) Ayers, W. (2018). The Shifting Ground of Curriculum Thought and Everyday
Practice: Thinking About Schools.
(9) Ning, X., Gong, K., Li, W., & Zhang, L. (2021). JWSAA: joint weak saliency
and attention aware for person re-identification. Neurocomputing, 453,
801-811. https://doi.org/10.1016/j.neucom.2020.05.106
(10) Heyneman, S. P., & Lee, B. (2016). International organizations and the future
of education assistance. International Journal of Educational Development,
48(3), 9-22. https://doi.org/10.1016/j.ijedudev.2015.11.009.
(11) Hao, X., Zhang, G., & Ma, S. (2016). Deep Learning. International Journal of
Semantic Computing, 10(03), 417-439. https://doi.org/10.1142/
S1793351X16500045
(12) Qiu, L., Liu, Y., Hu, Q., & Liu, Y. (2018). Student dropout prediction in
massive open online courses by convolutional neural networks. Soft
Computing, 23. https://doi.org/10.1007/s00500-018-3581-3
https://doi.org/10.17993/3ctecno.2023.v12n1e43.70-85
(13) Yang, B., Lei, Y., Liu, J., & Li, W. (2016). Social Collaborative Filtering by
Trust. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1-1.
https://doi.org/10.1109/tpami.2016.2605085
(14) Naeen, H. M., & Jalali, M. (2019). A decentralized trust-aware collaborative
filtering recommender system based on weighted items for social tagging
systems. https://doi.org/10.48550/arXiv.1906.05143
(15) Yan, C., Pang, G., Bai, X., Liu, C., Xin, N., Gu, L., & Zhou, J. (2021). Beyond
triplet loss: person re-identification with fine-grained difference-aware
pairwise loss. IEEE Transactions on Multimedia. https://doi.org/10.1109/
TMM.2021.3069562
(16) Khatun, A., Denman, S., Sridharan, S., & Fookes, C. (2020). Joint
identification-verification for person re-identification: A four stream deep
learning approach with improved quartet loss function. Computer Vision
and Image Understanding, 197-198, 102989. https://doi.org/10.1016/
j.cviu.2020.102989
(17) Cai, W., Zhai, B., Liu, Y., Liu, R., & Ning, X. (2021). Quadratic polynomial
guided fuzzy C-means and dual attention mechanism for medical image
segmentation. Displays, 70, 102106. https://doi.org/10.1016/
j.displa.2021.102106
(18) Roch, S. (2011). Phase Transition in Distance-Based Phylogeny
Reconstruction. Computer Science. https://doi.org/10.48550/arXiv.1108.5781
(19) RUMELHART, D. E., Hinton, G. E., & Williams, R. J. (1988). Learning Internal
Representations by Error Propagation: Readings in Cognitive ence. https://
doi.org/10.1007/978-0-387-39940-9_3246
(20) Theodoros K. Dikaliotis, Tracey Ho, Sidharth Jaggi, Svitlana Vyetrenko, Hongyi
Yao, Michelle Effros, Jörg Kliewer, Elona Erez. (2010). Multiple-access
Network Information-flow and Correction Codes. IEEE Transactions on
Information Theory, 57(2), 1067-1079, https://doi.org/10.1109/TIT.2010.2095130.
(21) Ning, X., Duan, P., Li, W., & Zhang, S. (2020). Real-time 3D face alignment
using an encoder-decoder network with an efficient deconvolution layer.
IEEE Signal Processing Letters, 27, 1944-1948. https://doi.org/10.1109/
LSP.2020.3032277
(22) Hidasi, B., Karatzoglou, A., Baltrunas, L., & Tikk, D. (2015). Session-based
Recommendations with Recurrent Neural Networks. Computer ence. https://
doi.org/10.48550/arXiv.1511.06939
(23) Haruki Okamura, Hiroko Tsutsui, Toshinori Komatsu, Masuo Yutsudo, Akira
Hakura, Tadao Tanimoto, Kakuji Torigoe, Takanori Okura, Yoshiyuki Nukada,
Kazuko Hattori, Kenji Akita, Motoshi Namba, Fujimi Tanabe, Kaori Konishi,
Shigeharu Fukuda & Masashi Kurimoto. (1995). Cloning of a new cytokine
that induces IFN-gamma production by T cells. Nature, 378(6552), 88.
https://doi.org/10.1038/378088a0
(24) Shan, W. (2022). Digital streaming media distribution and transmission
process optimisation based on adaptive recurrent neural network.
Connection Science, 34(1), 1169-1180. https://doi.org/
10.1080/09540091.2022.2052264
https://doi.org/10.17993/3ctecno.2023.v12n1e43.70-85
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.43 | Iss.12 | N.1 January - March 2023
83