nanopowder was present at the center. The presence of ammonia was also confirmed
as being essential to the process. Using the shaking flask method, the spectra of xrd
confirm the presence of copper nanoparticles, and the Fesem and Tem images
confirm the formation of spherical particles. A red shift was observed in the UV-vis
absorption spectra, indicating an increase in particle size, and it was confirmed that
the core-shells produced through sol-gel method exhibited antibacterial activity.
Cu@sio2 core-shell can be used as a futuristic, effective antibacterial agent in
biomedical applications.
REFERENCES
(1) Chauhan, S., Kumar, M., Chhoker, S., & Katyal, S. C. (2016). A comparative
study on structural, vibrational, dielectric and magnetic properties of
microcrystalline BiFeO3, nanocrystalline BiFeO3 and core–shell structured
BiFeO3@ SiO2 nanoparticles. Journal of Alloys and Compounds, 666,
454-467..
(2) Fang, L., Wu, W., Huang, X., He, J., & Jiang, P. (2015). Hydrangea-like zinc
oxide superstructures for ferroelectric polymer composites with high
thermal conductivity and high dielectric constant. Composites Science and
Technology, 107, 67-74.
(3) Zhou, W., Chen, Q., Sui, X., Dong, L., & Wang, Z. (2015). Enhanced thermal
conductivity and dielectric properties of Al/β-SiCw/PVDF composites.
Composites Part A: Applied Science and Manufacturing, 71, 184-191.
(4) Wen, F., Liu, X., Xu, Z., Tang, H., Bai, W., Zhao, W. S., ... & Wang, G. (2017).
Low loss and high permittivity composites based on poly (vinylidene
fluoride-chlorotrifluoroethylene) and lead lanthanum zirconate titanate.
Ceramics International, 43(1), 1504-1508.
(5) Janardhanan, R., Karuppaiah, M., Hebalkar, N., & Rao, T. N. (2009). Synthesis
and surface chemistry of nano silver particles. Polyhedron, 28(12),
2522-2530.
(6) Bhattacharyya, S., Kudgus, R. A., Bhattacharya, R., & Mukherjee, P. (2011).
Inorganic nanoparticles in cancer therapy. Pharmaceutical research, 28,
237-259.
(7) Tiquia-Arashiro, S., & Rodrigues, D. F. (2016). Extremophiles: applications in
nanotechnology (p. 193). New York, NY, USA:: Springer International
Publishing.
(8) Bhatia, S. (2016). Natural polymer drug delivery systems: Nanoparticles,
plants, and algae. Springer.
(9) Singh, R., & Nalwa, H. S. (2011). Medical applications of nanoparticles in
biological imaging, cell labeling, antimicrobial agents, and anticancer
nanodrugs. Journal of biomedical nanotechnology, 7(4), 489-503. https://
doi.org/10.1166/jbn.2011.1324.
(10) Cuffari B. (2017). Nanotechnology in the Paint Industry. https://
www.azonano.com/article.aspx?ArticleID=4710.
https://doi.org/10.17993/3ctecno.2023.v12n1e43.337-352
(11) Santhoshkumar, J., Agarwal, H., Menon, S., Rajeshkumar, S., & Kumar, S. V.
(2019). A biological synthesis of copper nanoparticles and its potential
applications. Green Synthesis, Characterization and Applications of
Nanoparticles (pp. 199-221). Elsevier.
(12) Kırmusaoğlu, S. (Ed.). (2019). Antimicrobials, Antibiotic Resistance,
Antibiofilm Strategies and Activity Methods. BoD–Books on Demand.
(13) Agarwala, M., Choudhury, B., & Yadav, R. N. S. (2014). Comparative study of
antibiofilm activity of copper oxide and iron oxide nanoparticles against
multidrug resistant biofilm forming uropathogens. Indian journal of
microbiology, 54, 365-368. https://doi.org/10.1007/s12088-014-0462-z.
(14) Chaudhary, J., Tailor, G., Yadav, B. L., & Michael, O. (2019). Synthesis and
biological function of Nickel and Copper nanoparticles. Heliyon, 5(6),
e01878. https://doi.org/10.1016/j.heliyon.2019.e01878
(15) Mary, A. A., Ansari, A. T., & Subramanian, R. (2019). Sugarcane juice mediated
synthesis of copper oxide nanoparticles, characterization and their
antibacterial activity. Journal of King Saud University-Science, 31(4),
1103-1114. https://doi.org/10.1016/j.jksus.2019.03.003
(16) Ismail, M. I. M. (2020). Green synthesis and characterizations of copper
nanoparticles. Materials Chemistry and Physics, 240, 122283. https://doi.org/
10.1016/j.matchemphys.2019.122283
(17) Harishchandra, B. D., Pappuswamy, M., Antony, P. U., Shama, G., Pragatheesh,
A., Arumugam, V. A., ... & Sundaram, R. (2020). Copper nanoparticles: a
review on synthesis, characterization and applications. Asian Pacific Journal
of Cancer Biology, 5(4), 201-210. ,https://doi.org/10.31557/APJCB.2020.5.4.201
(18) Trapalis, C. C., Kokkoris, M., Perdikakis, G., & Kordas, G. (2003). Study of
antibacterial composite Cu/SiO2 thin coatings. Journal of sol-gel science and
technology, 26(1-3), 1213-1218.
(19) Ghosh Chaudhuri, R., & Paria, S. (2012). Core/shell nanoparticles: classes,
properties, synthesis mechanisms, characterization, and applications.
Chemical reviews, 112(4), 2373-2433.
(20) Hu, W., Chen, S., Li, X., Shi, S., Shen, W., Zhang, X., & Wang, H. (2009). In situ
synthesis of silver chloride nanoparticles into bacterial cellulose
membranes. Materials Science and Engineering: C, 29(4), 1216-1219.
(21) Mishra, G., Verma, S. K., Singh, D., Yadawa, P. K., & Yadav, R. R. (2011).
Synthesis and ultrasonic characterization of Cu/PVP nanoparticles-
polymer suspensions. Open Journal of Acoustics, 1(01), 9.
(22) Martınez, J. R., Ruiz, F., Vorobiev, Y. V., Pérez-Robles, F., & González-
Hernández, J. (1998). Infrared spectroscopy analysis of the local atomic
structure in silica prepared by sol-gel. The Journal of chemical physics,
109(17), 7511-7514.
(23) Furlan, P. Y., Furlan, A. Y., Kisslinger, K., Melcer, M. E., Shinn, D. W., & Warren,
J. B. (2019). Water as the solvent in the stober process for forming ultrafine
silica shells on magnetite nanoparticles. ACS Sustainable Chemistry &
Engineering, 7(18), 15578-15584.
https://doi.org/10.17993/3ctecno.2023.v12n1e43.337-352
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.43 | Iss.12 | N.1 January - March 2023
351