(18) Chitra, K., &Annadurai, G. (2013). Bioengineered silver nanobowls using
Trichoderma viride and its antibacterial activity against Gram-positive and
Gram-negative bacteria. Journal of Nanostructure Chemistry, 39, 3-9. http://
dx.doi.org/10.1186/2193-8865-3-9
(19) Dakal, T. C., Kumar, A., Majumdar, R. S., and Yadav, V. (2016). Mechanistic
basis of antimicrobial actions of silver nanoparticles. Front. Microbiol., 16,
1831. https://doi.org/10.3389/fmicb.2016.01831
(20) Deborah D.L. Chung, (2017). Carbon Composites, Composites with carbon
fiber, Nanofiber, and Nanotubes, (Second Edition).
(21) DeGruyter J., Aveskamp M.M.,Woudenberg J.H.,Verkley G.J., Groenewald J.Z.
et al. (2009). Molecular phylogeny of Phoma and allied anamorph genera:
Towards a reclassification of the Phoma complex. Mycol. Res., 113,
508-519.
(22) Dongyang W*, Baiji X, Lin W, Yidi Z, Lijun L* &Yanmin Z*. (2021).
Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii
and its antifungal/antiproliferative activities. Sci. Rep., 11, 10356. https://
doi.org/10.1038/s41598-021-89854-5
(23) Du, L., Xu, Q., Huang, M., Xian, L., and Feng, J.-X. (2015). Synthesis of small
silver nanoparticles under light radiation by fungus Penicillium oxalicum
and its application for the catalytic reduction of methylene blue. Mater.
Chem. Phys., 160, 40-47. https://doi.org/10.1016/j.matchemphys.2015.04.003
(24) Duran, N., Alves, O.L., De Souza, G.I.H., Esposito, E. and Marcato, P.D. (2007)
Antibacterial effect of silver nanoparticles by fungal process on textile
fabrics and their effluent treatment. J Biomed Nanotechnol, 3, 203-208. http://
dx.doi.org/10.1080/19430892.2011.628573
(25) Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. (2010).
Biogenic synthesis of silver nanoparticles and their synergistic effect with
antibiotics: a study against grampositive and gram-negative bacteria.
Nanomedicine, 6, 103-109.
(26) Gade, A. K., Bonde, P., Ingle, A. P., Marcato, P. D., Durán, N., and Rai,M. K.
(2008). Exploitation of Aspergillus niger for Synthesis of Silver
Nanoparticles. J. Biobased Mater. Bioenergy, 2, 243-247. https://doi.org/
10.1166/jbmb.2008.401
(27) Gupta, R. K., Kumar, V., Gundampati, R. K., Malviya, M., Hasan, S.
H.,Jagannadham, M. V., et al. (2017). Biosynthesis of silver nanoparticles
from the novel strain of Streptomyces Sp. BHUMBU-80 with highly efficient
electroanalytical detection of hydrogen peroxide and antibacterial activity.
J.Environ. Chem. Eng., 5, 5624-5635. https://doi.org/10.1016/j.jece.2017.09.029
(28) Iravani, S., Korbekandi, H., Mirmohammadi, S. V., and Zolfaghari, B. (2014).
Synthesis of silver nanoparticles: chemical, physical and biological
methods. Res. Pharm. Sci., 9, 385-406.
(29) Irinyi L, Kovics G J & Sandor E, (2009). Taxonomical re-evaluation of Phoma-
likesoybean pathogenic fungi. MycolRes, 113, 249-260.
(30) Joshi P. (2012). The anticancer activity of chloroquine-gold nanoparticles
against MCF-7 breast cancer cells. Colloids and Surfaces B: Biointerfaces, 95,
195-200. https://doi.org/10.1016/j.colsurfb.2012.02.039
https://doi.org/10.17993/3ctecno.2023.v12n1e43.296-319
(31) Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., and Lee, D. S. (2011).
Antibacterial activity of silver-nanoparticles against Staphylococcus
aureus and Escherichiacoli. Korean J. Microbiol. Biotechnol. 39, 77-85.
(32) Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., and Lee, Y. S.(2012).
Antifungal effects of silver nanoparticles (AgNPs) against various
plantpathogenic fungi. Mycobiology, 40, 53-58. https://doi.org/10.5941/
MYCO.2012.40.1.053
(33) Kim, J.S., Kuk, E., Yu, K.N., Kim, J.H., Park, S.J., Lee, H.J., Kim, S.H., Park,
Y.K., Park, Y.H., & Hwang, C.Y. (2007). Antimicrobial effects of silver
nanoparticles. Nanomedicine, 3. 95-101.http://dx.doi.org/10.1016/
j.nano.2006.12.001
(34) Kinthokoi, K. J. ( 2019 ). Silver nanoparticles and their antibacterial activity
synthesized using selected medicinal plant extracts. 20, 1-91.
(35) Krishna. G*, Ram.P. M, Samatha.B, Shesha. V.Sathya. S. S. L. ( 2015 ).
Fungus-Mediated Synthesis of Silver Nanoparticles and Their Activity
against Gram Positive and Gram Negative Bacteria in Combination with
Antibiotics. Health Sciences, 12(7). http://dx.doi.org/10.14456/WJST.2015.67
(36) LamabamSophiya Devi and S. R. Joshi*. (2012). Antimicrobial and
Synergistic Effects of Silver Nanoparticles Synthesized Using Soil Fungi of
High Altitudes of Eastern Himalaya. Mycibiology, 28, 27-34. https://
www.tandfonline.com/loi/tmyb20
(37) Loo, Y. Y., Rukayadil, Y., Nor-Khaizura, M. A. R., Kuan, C. H., Chieng, B.W.,
Nishibuchi, M., et al. (2018). In vitro antimicrobial activity of green
synthesized silver nanoparticles against selected gram-negative
foodborne pathogens. Front. Microbiol., 9:1555. https://doi.org/10.3389/
fmicb.2018.01555
(38) Maliszewska, I., Szewezk, K., &Waszak, K. (2009). Biological synthesis of
silver nanoparticles. Journal of Physics, 146, 1-6. http://dx.doi.org/
10.1088/1742-6596/146/1/012025
(39) Marambio-Jones, C., & Hoek, E.M.V. (2010). A review of the antibacterial
effects of silver nanomaterilas and potential implications for human health
and the environment. Journal of Nanoparticles Research, 12, 1531-1551.
http://dx.doi.org/10.1007/s11051-010-9900-y
(40) Matrinez-Castanon GA, Nino-Martinez N, Matinez-Gutierrez F., Martinez-
Mendoza, JR, and Ruiz F. (2008). Synthesis and antibacterial activity of
silver nanoparticles with different sizes. Journal of Nanoparticles Research,
10, 1343-1348.
(41) Mishra, S., and Singh, H. B. (2015). Biosynthesized silver nanoparticles as a
nanoweapon against phytopathogens: exploring their scope andpotential
in agriculture. Appl. Microbiol. Biotechnol, 99, 1097-1107. https://doi.org/
10.1007/s00253-014-6296-0
(42) Mohamed.A. Y, Abdallah M. E, Abd El-Rahim, M.A. El-Samawaty. (2021).
Biosynthesis of silver nanoparticles using Penicilliumverrucosum and
analysis of their antifungal activity. 2125, 2123-2127.
https://doi.org/10.17993/3ctecno.2023.v12n1e43.296-319
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.43 | Iss.12 | N.1 January - March 2023
317