After the model has been complete training and implemented on raspberry pi 3.
The received email from the raspberry pi 3 after testing two images (covid-19 and
normal ), Fig. 12 represents the covid-19 case and Fig. 13 represent the normal one.
7. CONCLUSIONS
In this work, an automatic system for detecting COVID-19 has been constructed
successfully to recognize covid-19 case and normal case from x-ray images. For
classification, we are successfully used the deep learning methods specially the CNN
network with transfer learning like (EffienentNet B0, ResNet50). The obtained result
presented by EffienentNet B0 without augmentation is 98.5% for testing accuracy.
After the model has been implemented successfully on raspberry pi 3,which give the
ability for raspberry pi 3 to distinguish the covid-19 case from normal case from x- ray
image. Finally, raspberry pi 3 send email to the doctor represent the situation of the
patient.
8. ACKNOWLEDGMENT
We would like to thank Causal Productions for permits to use and revise the
template provided by Causal Productions. Original version of this template was
provided by courtesy of Causal Productions (www.causalproductions.com).
REFERENCES
(1) Z. Xu et al. (2020). Pathological findings of COVID-19 associated with acute
respiratory distress syndrome. Lancet Respir. Med., 8(4), 420-422. https://
doi.org/10.1016/S2213-2600(20)30076-X
(2) T. Ozturk, M. Talo, E. A. Yildirim, U. B. Baloglu, O. Yildirim, and U. Rajendra
Acharya. (2020). Automated detection of COVID-19 cases using deep neural
networks with X-ray images. Comput. Biol. Med., 121(April), 103792. https://
doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.17993/3ctecno.2023.v12n1e43.282-294
(3) V. Shah, R. Keniya, A. Shridharani, M. Punjabi, J. Shah, and N. Mehendale.
(2021). Diagnosis of COVID-19 using CT scan images and deep learning
techniques. Emerg. Radiol., 28(3), 497-505. https://doi.org/10.1007/
s10140-020-01886-y
(4) A. H. MARAY, O. I. Alsaif, and K. H. TANOON. (2022). Design and
Implementation of Low-Cost Medical Auditory System of Distortion
Otoacoustic Using Microcontroller. J. Eng. Sci. Technol., 17(2), 1068-1077.
(5) N. Alsharman and I. Jawarneh. (2020). GoogleNet CNN neural network
towards chest CT-coronavirus medical image classification. J. Comput. Sci.
16(5), 620-625. https://doi.org/10.3844/JCSSP.2020.620.625
(6) H. Maghdid, A. T. Asaad, K. Z. G. Ghafoor, A. S. Sadiq, S. Mirjalili, and M. K. K.
Khan. (2021). Diagnosing COVID-19 pneumonia from x-ray and CT images
using deep learning and transfer learning algorithms. Proc. SPIE 11734,
Multimodal Image Exploitation and Learning, 117340E, https://doi.org/
10.1117/12.2588672
(7) S. Vaid, R. Kalantar, and M. Bhandari. (2020). Deep learning COVID-19
detection bias: accuracy through artificial intelligence. Int. Orthop., 44(8),
1539-1542. https://doi.org/10.1007/s00264-020-04609-7
(8) A. Sai Bharadwaj Reddy and D. Sujitha Juliet. (2019). Transfer learning with
RESNET-50 for malaria cell-image classification. Proc. 2019 IEEE Int. Conf.
Commun. Signal Process. ICCSP 2019, 945-949. https://doi.org/10.1109/
ICCSP.2019.8697909
(9) M. Tan and Q. V. Le. (2019). EfficientNet: Rethinking model scaling for
convolutional neural networks. 36th Int. Conf. Mach. Learn. ICML 2019,
2019(June), 10691-10700.
(10) I. A. Saleh, O. I. Alsaif, and M. A. Yahya. (2020). Optimal distributed decision
in wireless sensor network using gray wolf optimization. IAES Int. J. Artif.
Intell., 9(4), 646-654. https://doi.org/10.11591/ijai.v9.i4.pp646-654
(11) E. A. Mohammed and H. A. Ahmed. (2022).
Raspberry pi Based Osteoarthritis
Disease classification. 7(2), 3738-3745.
(12) D. S. Kermany et al. (2018). Identifying Medical Diagnoses and Treatable
Diseases by Image-Based Deep Learning. Cell, 172(5), 1122-1131.E9. https://
doi.org/10.1016/j.cell.2018.02.010
(13) F. Wu, et al. (2020). A new coronavirus associated with human respiratory
disease in China. Nature, 579(7798), 265-269. https://doi.org/10.1038/
s41586-020-2008-3
(14) G. Marques, D. Agarwal, and I. de la Torre Díez. (2020). Automated medical
diagnosis of COVID-19 through EfficientNet convolutional neural network.
Appl. Soft Comput. J., 96, 106691. https://doi.org/10.1016/j.asoc.2020.106691
(15) K. Ali, Z. A. Shaikh, A. A. Khan, and A. A. Laghari. (2022). Multiclass skin
cancer classification using EfficientNets - a first step towards preventing
skin cancer. Neurosci. Informatics, 2(4), 100034. https://doi.org/10.1016/
j.neuri.2021.100034
(16) S. Q. Alhashmi, K. H. Thanoon, and O. I. Alsaif. (2020). A Proposed Face
Recognition based on Hybrid Algorithm for Features Extraction. Proc. 6th
https://doi.org/10.17993/3ctecno.2023.v12n1e43.282-294
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed.43 | Iss.12 | N.1 January - March 2023
293