(3) Soualah-Alila, F., Nicolle, C., & Mendes, F. (2015).
Towards a methodology for
semantic and context-aware mobile learning [M/EB].[2019-4-26]
(4) Stahl, G., Koschmann, T. D., & Suthers, D. D. (2006).
collaborative learning: An historical perspective [C]
R. K. Sawyer(Ed.).
Cambridge handbook of the learning sciences. Cambridge, UK: Cambridge
University Press:409-426.
(5) Heimbuch, S., Ollesch, L., & Bodemer, D. ( 2018).
collaboration scripts on learning activities for wiki-based environments [J]
International Journal of Computer-Supported Collaborative Learning
13(3):331-357.
(6) Kreijns, K, Kirschner, P. A., & Jochems, W. (2003).
Identifying the pitfalls for
social interaction in computer-supported collaborative learning
environments: A review of the research [J]. Computers in Human Behavior
19(3):35-353.
(7) Ludvigsen, S., Cress, U, Law, N., Stahl, G., & Rose, C. P. (2017).
direction for the CSCL field: Methodologies and eight controversies [J]
International Journal of Computer-Supported Collaborative Learning
12(4):337-341.
(8)
Isotani, S., Mizoguchi, R., Isotani, S., Capeli, 0. M., Isotani, N., Albuquerque, A.
R., & Jaques, P. (2013).
A semantic web- based authoring tool to facilitate
the planning of collaborative learning scenarios compliant with learning
theories [J]. Computers & Education, 63(2):267-284.
(9)
Reis, R. C. D., Isotani, S., Rodriguez, C. L., Lyra, K. T, Jaques, P. A., &
Bittencourt, I. I. (2018).
Affective states in computer-supported collaborative
learning: Studying the past to drive the future [J]. Computers & Education
(120): 29-50.
(10)
Rienties, B., Tempelaar, D., Van den Bossche, P, Gijselaers, W., & Segers, M.
(2009).
The role of academic motivation in computer-supported
collaborative learning [J]. Computers in Human Behavior, 25(6):1195-1206.
(11) Koops, W., & Van der Vleuten, C. (2018).
A computer-supported
collaborative learning environment in medical education: The importance
for educators to consider medical students’ motivation [J]. J
Contemporary Medical Education, 8(1): 10-17.
(12) Xiang, W. A. , et al.
Multi-view stereo in the Deep Learning Era: A
Comprehensive Review. (2021).
(13) W. Cai, D. Liu, X. Ning, et al.,
Voxel-based Three-view Hybrid Parallel
Network for 3D Object Classification, Displays 69 (1) (2021).
(14) Bai X, Zhou J, Ning X, et al. 3D data computation and visualization. Displays
2022: 102169.
(15) X. Ning, P. Duan, W. Li, and S. Zhang,
Real-time 3D face alignment using an
encoder-decoder network with an efficient deconvolution layer,
Processing Letters, vol. 27, pp. 1944–1948, 2020.
(16) Wang C, Zhou J, Xiao B, et al.
Uncertainty Estimation for Stereo Matching
Based on Evidential Deep Learning. Pattern Recognition, 2021.
https://doi.org/10.17993/3cemp.2023.120151.87-109
107
3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376
Ed. 51 Iss.12 N.1 January - March, 2023