(12) Kang, D. (2021).
Research on Implicit Attitude and Behavioral Tendency of
College Students to Mobile Payment. Psychology of China
https://doi.org/10.35534/pc.0302014
(13)
Geomagnetic secular variation anomalies in relation to the recent crustal
movement in the southwestern region of Japan: Sumitomo, Norihiko, 1981
Bull. Disaster Prevent. Res. Inst. Kyoto Univ., 30(4)(274):97–130,
Research Part B. Oceanographic Literature Review
, Volume 28, Issue 12, 1981,
Page 874, ISSN 0198-0254, https://doi.org/10.1016/0198-0254(81)91240-1
(14) Kim, H. R., Zhou, W., & Yun, S. (2021).
Mobile Payment Service Continuance
Usage Intention and Network Externality: Focused on Self and Functional
Congruity. THE JOURNAL OF SOCIAL SCIENCE, 28(1), 176-197. https://
doi.org/10.46415/jss.2021.03.28.1.176
(15) Ramli, F., & Hamzah, M. I. (2021).
Mobile payment and e-wallet adoption in
emerging economies: A systematic literature review.
Economies and Islamic Research, 9(2), 1. https://doi.org/10.24191/
jeeir.v9i2.13617
(16) Wong, D., Liu, H., Yue, M. L., Sun, Y., & Zhang, Y. (2021).
Gamified Money:
Exploring the Effectiveness of Gamification in Mobile Payment Adoption
among the Silver Generation in China.
Information Technology & People,
ahead-of-print(ahead-of-print). https://doi.org/10.1108/ITP-09-2019-0456
(17) Cacioppo, J. T., Petty, R. E., & Kao, C. F. (1984).
The efficient assessment of
NFC. Journal of Personality Assessment, 48(3), 306-307. https://doi.org/
10.1207/s15327752jpa4803_13
(18) Sehaqui, H., Qi, Z., & Berglund, L. A. (2011).
High-porosity aerogels of high
specific surface area prepared from nanofibrillated cellulose (NFC)
Composites Science & Technology, 71(13), 1593-1599. https://doi.org/10.1016/
j.compscitech.2011.07.003
(19) Christidis, K., & Devetsikiotis, M. (2016).
Blockchains and Smart Contracts for
the Internet of Things. IEEE Access, 4, 2292-2303. https://doi.org/10.1109/
ACCESS.2016.2566339
(20) Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016).
Current Research on Blockchain Technology?—A Systematic Review
PLoS ONE, 11(10), e0163477. https://doi.org/10.1371/journal.pone.0163477
(21) Wang, Y., Yan, J., Yang, Z., Wang, J., & Geng, Y. (2021).
A novel 1DCNN and
domain adversarial transfer strategy for small sample GIS partial discharge
pattern recognition. Measurement Science and Technology
(125110pp). https://doi.org/10.1088/1361-6501/ac27e8
(22) Palomino, A. J., Marfil, R., Bandera, J. P., & Bandera, A. (2011).
Biologically Inspired AM for a Social Robot.
Eurasip Journal on Advances in
Signal Processing, 2011(1), 1-10. https://doi.org/10.1155/2011/841078
(23)
Jiang, Y., Zhao, M., Zhao, W., Qin, H., Qi, H., Wang, K., & Wang, C. (2021).
Prediction of sea temperature using temporal convolutional network and
LSTM-GRU network. Complex Engineering Systems, 1(2), -. https://doi.org/
10.20517/ces.2021.03
(24) Huang, G., Li, X., Zhang, B., & Ren, J. (2021
). PM2.5 Concentration
Forecasting at Surface Monitoring Sites Using GRU Neural Network Based
https://doi.org/10.17993/3cemp.2023.120151.207-224
223
3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376
Ed. 51 Iss.12 N.1 January - March, 2023