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1 INTRODUCTION

Here we examine the following problem for a p-biharmonic pseudo-parabolic equation with logarithmic
nonlinearity.



ut −∆ut +∆(|∆u|p−2∆u)− div(|∇u|q−2∇u) = −div(|∇u|q−2∇u log |∇u|) if (x, t) ∈ Ω× (0, T ),

u = ∂u
∂ν = 0 if (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x) if x ∈ Ω.
(1)

where Ω ⊂ RN (N ≥ 1) represents a bounded domain whose boundary ∂Ω is smooth enough, T ∈
(0,∞), ν indicates the normal vector on ∂Ω pointing outward, u0 ∈ W 2,p

0 (Ω)\{0} and the condition
2 < p < q < p(1 + 2

N+2) holds for p and q.

Pseudo-parabolic equations address several significant physical processes, like the evolution of two
components of intergalactic material, the leakage of homogeneous fluids through a rock surface, the
biomathematical modeling of a bacterial film, some thin film problems, the straight transmission
of nonlinear, dispersive, long waves, the heat transfer containing two temperatures, a grouping of
populations, etc. Shawalter and Ting [18], [22] first examined the pseudo parabolic equations in 1969.
After their precursory results, there are many papers studied the nonlinear pseudo-parabolic equations,
like semilinear pseudo-parabolic equations, quasilinear pseudo-parabolic equations, and even singular
and degenerate pseudo-parabolic equations (see [1], [28], [4], [6], [15], [24], [25]). A pseudo-parabolic
equation with p-Laplacian ∆pu = div(|∇u|p−2∇u) and logarithmic nonlinearity were studied by Nahn,
and Truong [13] in 2017. Considering the equation,

ut −∆ut −∆pu = |u|p−2u log |u|

and by using the potential well method proposed by Sattinger [17] and a logarithmic Sobolev inequa-
lity, they proved the existence or nonexistence of global weak solutions. Additionally, they provided
requirements for both the large time decay of weak global solutions and the finite time blow-up of weak
solutions. Later, many authors [26], [27], [23] considered pseudo-parabolic equations with logarithmic
nonlinearity and established results for local and global existence, uniqueness, decay estimate and
asymptotic behaviour of solutions, blow-up results. Logarithmic nonlinearities in parabolic and pseudo-
parabolic equations were studied by Lakshmipriya et.al [11], [10] and other researchers [29], [9], [5] and
they proved the existence of weak solutions and their blow up in finite time. Lower bound of Blow-up
time to a fourth order parabolic equation modelling epitaxial thin film growth

Recently, higher-order equations have gained much importance in studies. Lower bound of Blow-up
time to a fourth order parabolic equation modelling epitaxial thin film growth studied by Liu et.al [3].
The p-biharmonic equation

ut +∆(|∆u|p−2∆u) + λ|u|p−2u = 0

were studied by Liu and Guo [14], and by using the discrete-time method and uniform estimates, they
established the existence and uniqueness of weak solutions. Hao and Zhou [7] obtained results for blow
up, extinction and non-extinction of solutions for the equation

ut +∆(|∆u|p−2∆u) = |u|q − 1

|Ω|



Ω
|u|dx.

Wang and Liu [8] studied the p-biharmonic parabolic equation with logarithmic nonlinearity,

ut +∆(|∆u|p−2∆u) = |u|q−1u log |u|

for 2 < p < q < p(1 + 4
n) and proved the global existence, blow up, extinction and no extinction of

solutions. Then Liu and Li [2] studied,

ut +∆(|∆u|p−2∆u) = λ|u|q−1u log |u|.

Based on the difference and variation methods, they showed the existence of weak solutions and observed
large-time behaviour and the transmission of solution perturbations for λ > 0, p > q > p

2 + 1, p > n
2 .

https://doi.org/10.17993/3ctic.2022.112.108-122

Comert and Piskin [?] studied a p-biharmonic pseudo-parabolic equation with logarithmic nonlinearity
and used the potential well method and logarithmic Sobolev inequality obtained the existence of the
unique global weak solution. In addition, they also exhibited polynomial decay of solutions. Motivated
by these works, we have formulated our problem (1) for a p-biharmonic pseudo-parabolic equation
with logarithmic nonlinearity and studied their existence and non-existence. The problem (1) for the
case p = 2 is already investigated and proved the existence, uniqueness and blow up of solutions
(see [19], [20], [21]).

The rest of this paper is arranged to the two sections below. The preliminary notations, definitions,
and results we need to support our main findings are described in Section 2. Section 3 contains the
major findings of this paper explained in five theorems.

2 PRELIMINARIES

In this section, we provide some fundamental ideas and facts that are necessary for us to explain our
findings. In this article, we follow the notations listed below throughout. ∥.∥r denotes the Lr(Ω) norm
for 1 ≤ r ≤ ∞, ∥.∥H1

0
denotes the norm in H1

0 (Ω), (., .)1 denotes the H1
0 (Ω)-inner product.=, r′ denotes

the Holder conjugate exponent of r > 1 (that is, r′ = r
r−1).

We define the energy functional J and the Nehari functional I as follows:
I, J : W 2,p

0 (Ω) → R by

J(u) =
1

p
∥∆u∥pp +

q + 1

q2
∥∇u∥qq −

1

q

∫

Ω
|∇u|q log |∇u|dx (2)

I(u) = ∥∆u∥pp + ∥∇u∥qq −
∫

Ω
|∇u|q log |∇u|dx (3)

Then we have,

J(u) =
1

q
I(u) +

(
1

p
− 1

q

)
∥∆u∥pp +

1

q2
∥∇u∥qq (4)

We introduce the Nehari manifold as

N = {u ∈ W 2,p
0 (Ω)\{0} : I(u) = 0}

also define the potential well as

W = {u ∈ W 2,p
0 (Ω)\{0} : J(u) < d, I(u) > 0}

where d = infu∈N J(u) is referred to as the depth of the potential well.

Definition 1. A function u = u(x, t) is considered to be a weak solution of problem (1) if u ∈
L∞(0, T ;W 2,p

0 (Ω)), ut ∈ L2(0, T ;H1
0 (Ω)) and validates

(ut, ϕ) + (∇ut,∇ϕ) + (|∆u|p−2∆u,∆ϕ) + (|∇u|q−2∇u,∇ϕ) = (|∇u|q−2∇u log |∇u|,∇ϕ) (5)

for all ϕ ∈ W 2,p
0 (Ω) and a.e 0 ≤ t ≤ T along with u(x, 0) = u0(x) in W 2,p

0 (Ω)\{0}. Furthermore, it also
agrees the energy inequality

∫ t

0
∥uτ∥2H1

0
dτ + J(u) ≤ J(u0) , 0 < t ≤ T. (6)

Lemma 1. [12] Let ρ be a positive number. Then we have the following inequalities:

xp log x ≤ (eρ)−1 for all x ≥ 1

and
|xp log x| ≤ (ep)−1 for all 0 < x < 1.
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The following lemma is similar to one in [8], [16]. However, we explain the proof with some changes
due to the occurrence of the non-linear logarithmic term −div(|∇u|q−2∇u log |∇u|) and the q-Laplacian
div(|∇u|q−2∇u).

Lemma 2. For any u ∈ W 2,p
0 (Ω)\{0}, we have the following:

(i) limγ→0+ J(γu) = 0 and limγ→∞ J(γu) = −∞;

(ii) d
dγJ(γu) =

1
γ I(γu) for γ > 0;

(iii) there exists a unique γ∗ = γ∗(u) > 0 such that d
dγJ(γu)|γ=γ∗ = 0. Also J(γu) is increasing on

0 < γ ≤ γ∗, decreasing on γ∗ ≤ γ < ∞ and takes the maximum at γ = γ∗;

(iv) I(γu) > 0 for 0 < γ < γ∗, I(γu) < 0 for γ∗ < γ < ∞ and I(γ∗u) = 0.

Proof.

(i) Applying the definition of J we have

J(γu) =
γp

p
∥∆u∥pp +

γq(q + 1)

q2
∥∇u∥qq −

γq log γ

q
∥∇u∥qq −

γq

q

∫

Ω
|∇u|q log |∇u|dx

so it is evident that limγ→0+ J(γu) = 0 and limγ→∞ J(γu) = −∞ since 2 < p < q.

(ii) Direct computation yields,

d

dγ
J(γu) = γp−1∥∆u∥pp + γq−1∥∇u∥qq − γq−1

∫

Ω
|∇u|q log |γ∇u|dx =

1

γ
I(γu)

(iii) We have,

d

dγ
J(γu) = γq−1

(
γp−q∥∆u∥pp + ∥∇u∥qq − log γ∥∇u∥qq −

∫

Ω
|∇u|q log |∇u|dx

)

Now define,

g(γ) = γp−q∥∆u∥pp + ∥∇u∥qq − log γ∥∇u∥qq −
∫

Ω
|∇u|q log |∇u|dx

Then we can observe that g is decreasing since

g′(γ) = (p− q)γp−q−1∥∆u∥pp −
1

γ
∥∇u∥qq < 0

Also, limγ→0+ g(γ) = ∞ and limγ→∞ g(γ) = −∞.
Hence, a unique γ∗ with g(γ∗) = 0 is guaranteed.
Also, g(γ) > 0 for 0 < γ < γ∗ and g(γ) < 0 for γ∗ < γ < ∞.
Now, since d

dγJ(γu) = γq−1g(γ) we obtain d
dγJ(γu)|γ=γ∗ = 0 and also J(γu) is increasing on

0 < γ ≤ γ∗, decreasing on γ∗ ≤ γ < ∞ and takes the maximum at γ = γ∗.

(iv) (iv) is obvious since I(γu) = γ d
dγJ(γu).

The above lemmas are useful to prove the main results in the following section.

https://doi.org/10.17993/3ctic.2022.112.108-122

3 MAIN RESULTS

In this section, we prove the existence of weak local solutions to the problem (1). Further, we show
that the weak solution exists globally using the potential well method when the initial energy of the
system is subcritical and critical. We show that the solution becomes unbounded in finite time and
specifies an upper limit for the blow-up time.

Theorem 1. (The Local existence)
Let u0 ∈ W 2,p

0 (Ω)\{0} and 2 < p < q < p(1 + 2
N+2). Then a T > 0 and a unique weak solution u(t) of

problem(1) agreeing the energy inequality
∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0) , 0 ≤ t ≤ T (7)

and u(0) = u0 exists.

Proof.Existence
Let {wi}i∈N be an orthonormal basis for W 2,p

0 (Ω). We use the approximation,

uk(x, t) =
k∑

i=1

ak,i(t)wi(x), k = 1, 2, . . .

where ak,i(t) : [0, T ] → R accepts the below ODE.

(ukt, wi) + (∇ukt,∇wi) + (|∆uk|p−2∆uk,∆wi) + (|∇uk|q−2∇uk,∇wi)

= (|∇uk|q−2∇uk log |∇uk|,∇wi) (8)

i = 1, 2, . . . , k and

uk(x, 0) =

k∑
i=1

ak,i(0)wi(x) → u0(x) in W 2,p
0 (Ω)\{0}

By Peano’s theorem, the above ODE has a solution ak,i and we can find a Tk > 0 with ak,i ∈ C1([0, Tk]),
which implies uk ∈ C1([0, Tk];W

2,p
0 (Ω)).

Now by multiplying (8) by ak,i(t), summing it for i = 1, 2, . . . , k and integrating with respect to t from
0 to t we obtain,

1

2
∥uk∥2H1

0
+

∫ t

0
(∥∆uk∥pp + ∥∇uk∥qq)dt =

1

2
∥uk(0)∥2H1

0
+

∫ t

0

∫

Ω
|∇uk|q log |∇uk|dxdt

That is,

ψk(t) = ψk(0) +

∫ t

0

∫

Ω
|∇uk|q log |∇uk|dxdt (9)

where

ψk(t) =
1

2
∥uk∥2H1

0
+

∫ t

0
(∥∆uk∥pp + ∥∇uk∥qq)dt (10)

We obtain the following by employing lemma(1), Gagliardo-Nirenberg interpolation inequality and
Young’s inequality.

∫

Ω
|∇uk|q log |∇uk|dx ≤

∫

{x∈Ω:|∇uk|≥1}
|∇uk|q log |∇uk|dx

≤ (eρ)−1∥∇uk∥q+ρ
q+ρ

≤ (eρ)−1Cq+ρ
1 ∥∆uk∥θ(q+ρ)

p ∥uk∥
(1−θ)(q+ρ)
2

≤ ϵ∥∆uk∥pp + C(ϵ)∥uk∥
p(1−θ)(q+ρ)
p−θ(q+ρ)

2 (11)
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Also, g(γ) > 0 for 0 < γ < γ∗ and g(γ) < 0 for γ∗ < γ < ∞.
Now, since d

dγJ(γu) = γq−1g(γ) we obtain d
dγJ(γu)|γ=γ∗ = 0 and also J(γu) is increasing on

0 < γ ≤ γ∗, decreasing on γ∗ ≤ γ < ∞ and takes the maximum at γ = γ∗.

(iv) (iv) is obvious since I(γu) = γ d
dγJ(γu).

The above lemmas are useful to prove the main results in the following section.
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3 MAIN RESULTS

In this section, we prove the existence of weak local solutions to the problem (1). Further, we show
that the weak solution exists globally using the potential well method when the initial energy of the
system is subcritical and critical. We show that the solution becomes unbounded in finite time and
specifies an upper limit for the blow-up time.

Theorem 1. (The Local existence)
Let u0 ∈ W 2,p

0 (Ω)\{0} and 2 < p < q < p(1 + 2
N+2). Then a T > 0 and a unique weak solution u(t) of

problem(1) agreeing the energy inequality
∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0) , 0 ≤ t ≤ T (7)

and u(0) = u0 exists.

Proof.Existence
Let {wi}i∈N be an orthonormal basis for W 2,p

0 (Ω). We use the approximation,

uk(x, t) =
k∑

i=1

ak,i(t)wi(x), k = 1, 2, . . .

where ak,i(t) : [0, T ] → R accepts the below ODE.

(ukt, wi) + (∇ukt,∇wi) + (|∆uk|p−2∆uk,∆wi) + (|∇uk|q−2∇uk,∇wi)

= (|∇uk|q−2∇uk log |∇uk|,∇wi) (8)

i = 1, 2, . . . , k and

uk(x, 0) =

k∑
i=1

ak,i(0)wi(x) → u0(x) in W 2,p
0 (Ω)\{0}

By Peano’s theorem, the above ODE has a solution ak,i and we can find a Tk > 0 with ak,i ∈ C1([0, Tk]),
which implies uk ∈ C1([0, Tk];W

2,p
0 (Ω)).

Now by multiplying (8) by ak,i(t), summing it for i = 1, 2, . . . , k and integrating with respect to t from
0 to t we obtain,

1

2
∥uk∥2H1

0
+

∫ t

0
(∥∆uk∥pp + ∥∇uk∥qq)dt =

1

2
∥uk(0)∥2H1

0
+

∫ t

0

∫

Ω
|∇uk|q log |∇uk|dxdt

That is,

ψk(t) = ψk(0) +

∫ t

0

∫

Ω
|∇uk|q log |∇uk|dxdt (9)

where

ψk(t) =
1

2
∥uk∥2H1

0
+

∫ t

0
(∥∆uk∥pp + ∥∇uk∥qq)dt (10)

We obtain the following by employing lemma(1), Gagliardo-Nirenberg interpolation inequality and
Young’s inequality.

∫

Ω
|∇uk|q log |∇uk|dx ≤

∫

{x∈Ω:|∇uk|≥1}
|∇uk|q log |∇uk|dx

≤ (eρ)−1∥∇uk∥q+ρ
q+ρ

≤ (eρ)−1Cq+ρ
1 ∥∆uk∥θ(q+ρ)

p ∥uk∥
(1−θ)(q+ρ)
2

≤ ϵ∥∆uk∥pp + C(ϵ)∥uk∥
p(1−θ)(q+ρ)
p−θ(q+ρ)

2 (11)
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where θ =
(

1
n + 1

2 − 1
q+ρ

)(
2
n + 1

2 − 1
p

)−1
, ϵ ∈ (0, 1),

C(ϵ) =
(

pϵ
θ(q+ρ)

) θ(q+ρ)
θ(q+ρ)−p

(
p−θ(q+ρ)

p

)(
(eρ)−1Cq+ρ

1

) p
p−θ(q+ρ) and,

ρ is chosen so that 2 < q + ρ < p(1 + 2
n+2).

Let β = p(1−θ)(q+ρ)
2(p−θ(q+ρ)) =

np+(p−n)(q+ρ)
p(4+n)−(n+2)(q+ρ) . Then β > 1 and

∫

Ω
|∇uk|q log |∇uk|dx ≤ ϵ∥∆uk∥pp + C(ϵ)∥uk∥2β2 (12)

Then (9) implies that,

ψk(t) ≤ ψk(0) + ϵ

∫ t

0
∥∆uk∥ppdt+ C(ϵ)

∫ t

0
∥uk∥2β2 dt

≤ C2 + ϵψk(t) + C(ϵ)2β
∫ t

0

((
1

2
∥uk∥2H1

0

)β

+

(∫ s

0
(∥∆uk∥pp + ∥∇uk∥qq)ds

)β
)
dt

≤ C2 + ϵψk(t) + C3

∫ t

0
ψk(t)

βdt

Hence we get,

ψk(t) ≤ C4 + C5

∫ t

0
ψk(t)

βdt

Then the Gronwall-Bellman-Bihari type integral inequality gives a T such that 0 < T <
C1−β

4
C5(1−β) and

ψk(t) ≤ CT for all t ∈ [0, T ]. (13)

Hence the solution of (8) exists in [0, T ] for all k.
Now multiplying (8) by a′k,i(t) and summing for i = 1, 2, . . . , k we get,

(ukt, ukt) + (∇ukt,∇ukt) + (|∆uk|p−2∆uk,∆ukt) + (|∇uk|q−2∇uk,∇ukt)

= (|∇uk|q−2∇uk log |∇uk|,∇ukt)

integrating with respect to t,
∫ t

0
∥ukt∥2H1

0
dt+ J(uk(t)) = J(uk(0)) for all t ∈ [0, T ]. (14)

As contrast to that, a constant C6 > 0 satisfying

J(uk(0)) ≤ C6 for all k. (15)

exists since uk(0) → u0 and by the continuity of J . Then from (12),(13),(14) and (15) we can see that

C6 ≥
∫ t

0
∥ukt∥2H1

0
dt+

1

p
∥∆uk∥pp +

q + 1

q2
∥∇uk∥qq −

1

q

∫

Ω
|∇uk|q log |∇uk|dx

≥
∫ t

0
∥ukt∥2H1

0
dt+

(
1

p
− ϵ

q

)
∥∆uk∥pp +

q + 1

q2
∥∇uk∥qq −

C(ϵ)

q
∥uk∥2βH1

0

≥
∫ t

0
∥ukt∥2H1

0
dt+

(
1

p
− ϵ

q

)
∥∆uk∥pp +

q + 1

q2
∥∇uk∥qq −

C(ϵ)

q
2βCβ

T

Let C̃ = C6 +
C(ϵ)2β

q Cβ
T . Then we gain that

∫ t

0
∥ukt∥22dt ≤ C̃

∫ t

0
∥∇ukt∥22dt ≤ C̃

∥∆uk∥pp < C̃

(
1

p
− ϵ

q

)−1

∥∇uk∥qq < C̃
q2

q + 1
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Thus we have {uk}k∈N is bounded in L∞(0, T ;W 2,p
0 (Ω)) and {ukt}k∈N is bounded in L2(0, T ;H1

0 (Ω)).
Hence there exists a subsequence, however indicated by {uk}k∈N which agrees,

uk → u weakly* in L∞(0, T ;W 2,p
0 (Ω))

ukt → ut weakly in L2(0, T ;H1
0 (Ω))

uk → u weakly* in L∞(0, T ;W 1,q
0 (Ω))

since

ukt → ut weakly in L2(0, T ;L2(Ω))

by Aubin-Lions lemma we get,

uk → u strongly in C(0, T ;L2(Ω))

Therefore,

|∆uk|p−2∆uk → ξ1 weakly* in L∞(0, T ;W−2,p′

0 (Ω))

and,

|∇uk|q−2∇uk → ξ2 weakly* in L∞(0, T ;W−1,q′

0 (Ω))

where W−2,p′

0 (Ω) is the dual space of W 2,p
0 (Ω) and W−1,q′

0 (Ω) is the dual space of W 1,q
0 (Ω). Now from

the theory of monotone operators, it concludes,

ξ1 = |∆u|p−2∆u and ξ2 = |∇u|q−2∇u.

Now let Φ(u) = |u|q−2u log |u|. We have

∇uk → ∇u weakly* in L∞(0, T ;L2(Ω))

∇ukt → ∇ut weakly in L2(0, T ;L2(Ω))

Therefore,
∇uk → ∇u strongly in C(0, T ;L2(Ω))

and
Φ(∇uk) → Φ(∇u) a.e in Ω× (0, T )

We again use Lemma(1) and Gagliardo-Nirenberg interpolation inequality to emerge the below.
∫

Ω
(Φ(∇uk))

q′dx ≤
∫

{x∈Ω:|∇uk|≤1}

(
|∇uk|q−1| log |∇uk||

)q′
dx

+

∫

{x∈Ω:|∇uk|≥1}

(
|∇uk|q−1| log |∇uk||

)q′
dx

≤ (e(q − 1))−q′ |Ω|+ (eµ)−q′∥∇uk∥rr
≤ (e(q − 1))−q′ |Ω|+ (eµ)−q′Cr

7∥∆uk∥rαp ∥uk∥
r(1−α)
2

< C8

where r = (q − 1 + µ)q′, q′ = q
q−1 and α =

(
1
n + 1

2 − 1
r

) (
2
n + 1

2 − 1
p

)−1
. Hence,

Φ(∇uk) → Φ(∇u) weakly* in L∞(0, T ;Lq′(Ω))

Now for a fixed i in (8) letting k tends to ∞ we get,

(ut, wi) + (∇ut,∇wi) + (|∆u|p−2∆u,∆wi) + (|∇u|q−2∇u,∇wi) = (|∇u|q−2∇u log |∇u|,∇wi)
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where θ =
(

1
n + 1

2 − 1
q+ρ

)(
2
n + 1

2 − 1
p

)−1
, ϵ ∈ (0, 1),

C(ϵ) =
(

pϵ
θ(q+ρ)

) θ(q+ρ)
θ(q+ρ)−p

(
p−θ(q+ρ)

p

)(
(eρ)−1Cq+ρ

1

) p
p−θ(q+ρ) and,

ρ is chosen so that 2 < q + ρ < p(1 + 2
n+2).

Let β = p(1−θ)(q+ρ)
2(p−θ(q+ρ)) =

np+(p−n)(q+ρ)
p(4+n)−(n+2)(q+ρ) . Then β > 1 and

∫

Ω
|∇uk|q log |∇uk|dx ≤ ϵ∥∆uk∥pp + C(ϵ)∥uk∥2β2 (12)

Then (9) implies that,

ψk(t) ≤ ψk(0) + ϵ

∫ t

0
∥∆uk∥ppdt+ C(ϵ)

∫ t

0
∥uk∥2β2 dt

≤ C2 + ϵψk(t) + C(ϵ)2β
∫ t

0

((
1

2
∥uk∥2H1

0

)β

+

(∫ s

0
(∥∆uk∥pp + ∥∇uk∥qq)ds

)β
)
dt

≤ C2 + ϵψk(t) + C3

∫ t

0
ψk(t)

βdt

Hence we get,

ψk(t) ≤ C4 + C5

∫ t

0
ψk(t)

βdt

Then the Gronwall-Bellman-Bihari type integral inequality gives a T such that 0 < T <
C1−β

4
C5(1−β) and

ψk(t) ≤ CT for all t ∈ [0, T ]. (13)

Hence the solution of (8) exists in [0, T ] for all k.
Now multiplying (8) by a′k,i(t) and summing for i = 1, 2, . . . , k we get,

(ukt, ukt) + (∇ukt,∇ukt) + (|∆uk|p−2∆uk,∆ukt) + (|∇uk|q−2∇uk,∇ukt)

= (|∇uk|q−2∇uk log |∇uk|,∇ukt)

integrating with respect to t,
∫ t

0
∥ukt∥2H1

0
dt+ J(uk(t)) = J(uk(0)) for all t ∈ [0, T ]. (14)

As contrast to that, a constant C6 > 0 satisfying

J(uk(0)) ≤ C6 for all k. (15)

exists since uk(0) → u0 and by the continuity of J . Then from (12),(13),(14) and (15) we can see that

C6 ≥
∫ t

0
∥ukt∥2H1

0
dt+

1

p
∥∆uk∥pp +

q + 1

q2
∥∇uk∥qq −

1

q

∫

Ω
|∇uk|q log |∇uk|dx

≥
∫ t

0
∥ukt∥2H1

0
dt+

(
1

p
− ϵ

q

)
∥∆uk∥pp +

q + 1

q2
∥∇uk∥qq −

C(ϵ)

q
∥uk∥2βH1

0

≥
∫ t

0
∥ukt∥2H1

0
dt+

(
1

p
− ϵ

q

)
∥∆uk∥pp +

q + 1

q2
∥∇uk∥qq −

C(ϵ)

q
2βCβ

T

Let C̃ = C6 +
C(ϵ)2β

q Cβ
T . Then we gain that

∫ t

0
∥ukt∥22dt ≤ C̃

∫ t

0
∥∇ukt∥22dt ≤ C̃

∥∆uk∥pp < C̃

(
1

p
− ϵ

q

)−1

∥∇uk∥qq < C̃
q2

q + 1
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Thus we have {uk}k∈N is bounded in L∞(0, T ;W 2,p
0 (Ω)) and {ukt}k∈N is bounded in L2(0, T ;H1

0 (Ω)).
Hence there exists a subsequence, however indicated by {uk}k∈N which agrees,

uk → u weakly* in L∞(0, T ;W 2,p
0 (Ω))

ukt → ut weakly in L2(0, T ;H1
0 (Ω))

uk → u weakly* in L∞(0, T ;W 1,q
0 (Ω))

since

ukt → ut weakly in L2(0, T ;L2(Ω))

by Aubin-Lions lemma we get,

uk → u strongly in C(0, T ;L2(Ω))

Therefore,

|∆uk|p−2∆uk → ξ1 weakly* in L∞(0, T ;W−2,p′

0 (Ω))

and,

|∇uk|q−2∇uk → ξ2 weakly* in L∞(0, T ;W−1,q′

0 (Ω))

where W−2,p′

0 (Ω) is the dual space of W 2,p
0 (Ω) and W−1,q′

0 (Ω) is the dual space of W 1,q
0 (Ω). Now from

the theory of monotone operators, it concludes,

ξ1 = |∆u|p−2∆u and ξ2 = |∇u|q−2∇u.

Now let Φ(u) = |u|q−2u log |u|. We have

∇uk → ∇u weakly* in L∞(0, T ;L2(Ω))

∇ukt → ∇ut weakly in L2(0, T ;L2(Ω))

Therefore,
∇uk → ∇u strongly in C(0, T ;L2(Ω))

and
Φ(∇uk) → Φ(∇u) a.e in Ω× (0, T )

We again use Lemma(1) and Gagliardo-Nirenberg interpolation inequality to emerge the below.
∫

Ω
(Φ(∇uk))

q′dx ≤
∫

{x∈Ω:|∇uk|≤1}

(
|∇uk|q−1| log |∇uk||

)q′
dx

+

∫

{x∈Ω:|∇uk|≥1}

(
|∇uk|q−1| log |∇uk||

)q′
dx

≤ (e(q − 1))−q′ |Ω|+ (eµ)−q′∥∇uk∥rr
≤ (e(q − 1))−q′ |Ω|+ (eµ)−q′Cr

7∥∆uk∥rαp ∥uk∥
r(1−α)
2

< C8

where r = (q − 1 + µ)q′, q′ = q
q−1 and α =

(
1
n + 1

2 − 1
r

) (
2
n + 1

2 − 1
p

)−1
. Hence,

Φ(∇uk) → Φ(∇u) weakly* in L∞(0, T ;Lq′(Ω))

Now for a fixed i in (8) letting k tends to ∞ we get,

(ut, wi) + (∇ut,∇wi) + (|∆u|p−2∆u,∆wi) + (|∇u|q−2∇u,∇wi) = (|∇u|q−2∇u log |∇u|,∇wi)
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for all i = 1, 2, . . . , k. Then for all ϕ ∈ W 2,p
0 (Ω) and for a.e. t ∈ [0, T ],

(ut, ϕ) + (∇ut,∇ϕ) + (|∆u|p−2∆u,∆ϕ) + (|∇u|q−2∇u,∇ϕ) = (|∇u|q−2∇u log |∇u|,∇ϕ)

and u(x, 0) = u0(x) in W02, p
2(Ω)\{0}.

Uniqueness
Let u and ũ be two weak solutions of problem (1). For any ϕ ∈ H2

0 (Ω), it is noted that,

(ut, ϕ) + (∇ut,∇ϕ) + (|∆u|p−2∆u,∆ϕ) + (|∇u|q−2∇u,∇ϕ) = (|∇u|q−2∇u log |∇u|,∇ϕ)

(ũt, ϕ) + (∇ũt,∇ϕ) + (|∆ũ|p−2∆ũ,∆ϕ) + (|∇ũ|q−2∇ũ,∇ϕ) = (|∇ũ|q−2∇ũ log |∇ũ|,∇ϕ)

On subtraction of one equation from the other and taking ϕ = u− ũ, the above yields that

(ϕt, ϕ) + (∇ϕt,∇ϕ) +

∫

Ω
(|∆u|p−2∆u− |∆ũ|p−2∆ũ)(∆u−∆ũ)dx

+

∫

Ω
(|∇u|q−2∇u− |∇ũ|q−2∇ũ)(∇u−∇ũ)dx

=

∫

Ω
(|∇u|q−2∇u log |∇u| − |∇ũ|q−2∇ũ log |∇ũ|)(∇u−∇ũ)dx

Then by the monotonicity of q-Laplacian div(|∇u|q−2∇u) and the p-Biharmonic operator ∆(|∆u|p−2∆u)
and by the Lipschitz continuity of |x|q−2x log |x| we get,

(ϕt, ϕ)1 ≤ L

∫

Ω
(∇u−∇ũ)2dx

where L > 0 is the Lipschitz constant. Thus we obtain,

(ϕt, ϕ)1 ≤ L∥∇ϕ∥22 ≤ L∥ϕ∥2H1
0

By the integration from 0 to t with respect to t we obtain that,

∥ϕ∥2H1
0
− ∥ϕ(0)∥2H1

0
≤ L

∫ t

0
∥ϕ∥2H1

0
dt.

Since ϕ(0) = u(0)− ũ(0) = 0, apply Gronwall’s inequality to gain,

∥ϕ∥2H1
0
= 0

Therefore, ϕ = 0 a.e. in Ω× (0, T ). That is, u = ũ a.e. in Ω× (0, T ).

Energy inequality
Let χ ∈ C[0, T ] be a non-negative function. Then (14) implies

∫ T

0
χ(t)

∫ t

0
∥ukt∥2H1

0
dsdt+

∫ T

0
J(uk(t))χ(t)dt =

∫ T

0
J(uk(0))χ(t)dt

Since, we have the lower semi-continuity
∫ T
0 J(uk(t))χ(t)dt with respect to the weak topology of

L2(0, T ;W 2,p
0 (Ω)). ∫ T

0
J(u(t))χ(t)dt ≤ lim inf

k→∞

∫ T

0
J(uk(t))χ(t)dt

also
∫ T
0 J(uk(0))χ(t)dt →

∫ T
0 J(u0)χ(t)dt as k → ∞. Thus we get,

∫ T

0
χ(t)

∫ t

0
∥ut∥2H1

0
dsdt+

∫ T

0
J(u(t))χ(t)dt ≤

∫ T

0
J(u0)χ(t)dt

Since χ(t) is arbitrary,
∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0) for 0 ≤ t ≤ T.

Hence the proof is complete.

Next theorem address the case of the initial energy of the system is sub-critical, i.e, J(u0) < d. We
will demonstrate the existence of weak global solutions.
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Theorem 2. (Global Existence for J(u0) < d)
A unique global weak solution u satisfying the energy estimate,

∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0) for 0 ≤ t < ∞ (16)

exists for problem(1) if the conditions J(u0) < d and I(u0) > 0 holds for the initial value u0 ∈
W 2,p

0 (Ω)\{0}.

Proof. Define {wi}i∈N and {uk}k∈N as in the proof of Theorem(1). Multiplying (8) by a′k,i(t) and
summing over i and integrating with respect to t from 0 to t we identify,

∫ t

0
∥ukt∥2H1

0
dt+ J(uk(t)) = J(uk(0)) for all t ∈ [0, Tmax) (17)

where Tmax is the maximum time for solution uk(x, t) to exist.
We have J(uk(0)) → J(u0) as k → ∞ and J(u0) < d. Therefore,

∫ t

0
∥ukt∥2H1

0
dt+ J(uk(t)) < d, t ∈ [0, Tmax) (18)

Since I(u0) > 0 we have I(uk(0)) > 0 for sufficiently large k. We claim that I(uk) > 0 for sufficiently
large k. Otherwise we can locate a t0 such that I(uk(t0)) = 0, uk(t0) ̸= 0. Then uk(t0) ∈ N and
J(uk(t0)) ≥ d, which is a contradiction to (18).
Therefore I(uk) > 0 for appropriately large k.
Then we get,

J(uk) =
1

q
I(uk) +

(
1

p
− 1

q

)
∥∆uk∥pp +

1

q2
∥∇uk∥qq > 0

Therefore, ∫ t

0
∥ukt∥2H1

0
dt < d

also (
1

p
− 1

q

)
∥∆uk∥pp +

1

q2
∥∇uk∥qq < J(uk) < d

Let K0 = min{1
p − 1

q ,
1
q2
} and K = d+ d

K0
then

∥∆uk∥pp + ∥∇uk∥qq < d/K0

and ∫ t

0
∥ukt∥2H1

0
dt+ ∥∆uk∥pp + ∥∇uk∥qq < K (19)

where K > 0. Hence we take Tmax = ∞. Now it is noticeable that problem (1) has a weak global
solution by applying identical ideas used to prove the Theorem(1), and the solution u also agrees with
the energy inequality ∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0), 0 ≤ t < ∞.

We will explain the global existence of weak solutions in the following theorem for the critical initial
energy. That is when J(u0) = d.

Theorem 3. (Global existence for J(u0) = d)
Observe the conditions J(u0) = d and I(u0) > 0 holds for the initial value u0 ∈ W 2,p

0 (Ω)\{0}.
Subsequently problem(1) possesses a unique global weak solution u ∈ L∞(0, T ;W 2,p

0 (Ω)) with ut ∈
L2(0, T ;L2(Ω)) for 0 ≤ t ≤ T and it also accepts the energy estimate (16).
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for all i = 1, 2, . . . , k. Then for all ϕ ∈ W 2,p
0 (Ω) and for a.e. t ∈ [0, T ],

(ut, ϕ) + (∇ut,∇ϕ) + (|∆u|p−2∆u,∆ϕ) + (|∇u|q−2∇u,∇ϕ) = (|∇u|q−2∇u log |∇u|,∇ϕ)

and u(x, 0) = u0(x) in W02, p
2(Ω)\{0}.

Uniqueness
Let u and ũ be two weak solutions of problem (1). For any ϕ ∈ H2

0 (Ω), it is noted that,

(ut, ϕ) + (∇ut,∇ϕ) + (|∆u|p−2∆u,∆ϕ) + (|∇u|q−2∇u,∇ϕ) = (|∇u|q−2∇u log |∇u|,∇ϕ)

(ũt, ϕ) + (∇ũt,∇ϕ) + (|∆ũ|p−2∆ũ,∆ϕ) + (|∇ũ|q−2∇ũ,∇ϕ) = (|∇ũ|q−2∇ũ log |∇ũ|,∇ϕ)

On subtraction of one equation from the other and taking ϕ = u− ũ, the above yields that

(ϕt, ϕ) + (∇ϕt,∇ϕ) +

∫

Ω
(|∆u|p−2∆u− |∆ũ|p−2∆ũ)(∆u−∆ũ)dx

+

∫

Ω
(|∇u|q−2∇u− |∇ũ|q−2∇ũ)(∇u−∇ũ)dx

=

∫

Ω
(|∇u|q−2∇u log |∇u| − |∇ũ|q−2∇ũ log |∇ũ|)(∇u−∇ũ)dx

Then by the monotonicity of q-Laplacian div(|∇u|q−2∇u) and the p-Biharmonic operator ∆(|∆u|p−2∆u)
and by the Lipschitz continuity of |x|q−2x log |x| we get,

(ϕt, ϕ)1 ≤ L

∫

Ω
(∇u−∇ũ)2dx

where L > 0 is the Lipschitz constant. Thus we obtain,

(ϕt, ϕ)1 ≤ L∥∇ϕ∥22 ≤ L∥ϕ∥2H1
0

By the integration from 0 to t with respect to t we obtain that,

∥ϕ∥2H1
0
− ∥ϕ(0)∥2H1

0
≤ L

∫ t

0
∥ϕ∥2H1

0
dt.

Since ϕ(0) = u(0)− ũ(0) = 0, apply Gronwall’s inequality to gain,

∥ϕ∥2H1
0
= 0

Therefore, ϕ = 0 a.e. in Ω× (0, T ). That is, u = ũ a.e. in Ω× (0, T ).

Energy inequality
Let χ ∈ C[0, T ] be a non-negative function. Then (14) implies

∫ T

0
χ(t)

∫ t

0
∥ukt∥2H1

0
dsdt+

∫ T

0
J(uk(t))χ(t)dt =

∫ T

0
J(uk(0))χ(t)dt

Since, we have the lower semi-continuity
∫ T
0 J(uk(t))χ(t)dt with respect to the weak topology of

L2(0, T ;W 2,p
0 (Ω)). ∫ T

0
J(u(t))χ(t)dt ≤ lim inf

k→∞

∫ T

0
J(uk(t))χ(t)dt

also
∫ T
0 J(uk(0))χ(t)dt →

∫ T
0 J(u0)χ(t)dt as k → ∞. Thus we get,

∫ T

0
χ(t)

∫ t

0
∥ut∥2H1

0
dsdt+

∫ T

0
J(u(t))χ(t)dt ≤

∫ T

0
J(u0)χ(t)dt

Since χ(t) is arbitrary,
∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0) for 0 ≤ t ≤ T.

Hence the proof is complete.

Next theorem address the case of the initial energy of the system is sub-critical, i.e, J(u0) < d. We
will demonstrate the existence of weak global solutions.
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Theorem 2. (Global Existence for J(u0) < d)
A unique global weak solution u satisfying the energy estimate,

∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0) for 0 ≤ t < ∞ (16)

exists for problem(1) if the conditions J(u0) < d and I(u0) > 0 holds for the initial value u0 ∈
W 2,p

0 (Ω)\{0}.

Proof. Define {wi}i∈N and {uk}k∈N as in the proof of Theorem(1). Multiplying (8) by a′k,i(t) and
summing over i and integrating with respect to t from 0 to t we identify,

∫ t

0
∥ukt∥2H1

0
dt+ J(uk(t)) = J(uk(0)) for all t ∈ [0, Tmax) (17)

where Tmax is the maximum time for solution uk(x, t) to exist.
We have J(uk(0)) → J(u0) as k → ∞ and J(u0) < d. Therefore,

∫ t

0
∥ukt∥2H1

0
dt+ J(uk(t)) < d, t ∈ [0, Tmax) (18)

Since I(u0) > 0 we have I(uk(0)) > 0 for sufficiently large k. We claim that I(uk) > 0 for sufficiently
large k. Otherwise we can locate a t0 such that I(uk(t0)) = 0, uk(t0) ̸= 0. Then uk(t0) ∈ N and
J(uk(t0)) ≥ d, which is a contradiction to (18).
Therefore I(uk) > 0 for appropriately large k.
Then we get,

J(uk) =
1

q
I(uk) +

(
1

p
− 1

q

)
∥∆uk∥pp +

1

q2
∥∇uk∥qq > 0

Therefore, ∫ t

0
∥ukt∥2H1

0
dt < d

also (
1

p
− 1

q

)
∥∆uk∥pp +

1

q2
∥∇uk∥qq < J(uk) < d

Let K0 = min{1
p − 1

q ,
1
q2
} and K = d+ d

K0
then

∥∆uk∥pp + ∥∇uk∥qq < d/K0

and ∫ t

0
∥ukt∥2H1

0
dt+ ∥∆uk∥pp + ∥∇uk∥qq < K (19)

where K > 0. Hence we take Tmax = ∞. Now it is noticeable that problem (1) has a weak global
solution by applying identical ideas used to prove the Theorem(1), and the solution u also agrees with
the energy inequality ∫ t

0
∥uτ∥2H1

0
dτ + J(u(t)) ≤ J(u0), 0 ≤ t < ∞.

We will explain the global existence of weak solutions in the following theorem for the critical initial
energy. That is when J(u0) = d.

Theorem 3. (Global existence for J(u0) = d)
Observe the conditions J(u0) = d and I(u0) > 0 holds for the initial value u0 ∈ W 2,p

0 (Ω)\{0}.
Subsequently problem(1) possesses a unique global weak solution u ∈ L∞(0, T ;W 2,p

0 (Ω)) with ut ∈
L2(0, T ;L2(Ω)) for 0 ≤ t ≤ T and it also accepts the energy estimate (16).
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Proof. Let ηj = 1− 1
j , j = 1, 2, . . . then ηj → 1 when j → ∞. Take into account the below problem:




ut −∆ut +∆(|∆u|p−2∆u)− div(|∇u|q−2∇u) = −div(|∇u|q−2∇u log |∇u|) if (x, t) ∈ Ω× (0, T ),

u = ∂u
∂ν = 0 if (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = ηju0(x) = uj0 if x ∈ Ω.
(20)

Since I(u0) > 0, lemma (2)(iv) gives a γ∗ > 1 with I(γ∗u0) = 0.
Again from lemma (2)(iii) and (iv) we gain I(ηju0) > 0 and J(ηju0) < J(u0) since ηj < 1 < γ∗.
Thus we have J(uj0) < d and I(uj0) > 0.
Then by Theorem(2), for each j problem (20) has a global weak solution uj ∈ L∞(0, T ;W p−2

0 (Ω)) with
ujt ∈ L2(0, T ;L2(Ω)) which satisfies the energy inequality,

 t

0
∥ujτ∥2H1

0
dτ + J(uj(t)) ≤ J(uj0) for 0 ≤ t < ∞.

Thus we have  t

0
∥ujτ∥2H1

0
dτ + J(uj) < d for 0 ≤ t < ∞.

Now by applying ideas similar to the one used to prove Theorem(1), we obtain a subsequence of {uj}j∈N
converging to a function u, which is a weak solution of problem (1). It also fulfils the energy inequality
(16). The solution’s uniqueness can also be proved as in Theorem(1).
Hence the proof is over.

The following theorem gives the blow-up of solutions for the subcritical initial energy and an upper
bound for blow up time.

Theorem 4. (Blow up for J(u0) < d)
Let u0 ∈ H2

0 (Ω)\{0}, J(u0) < d and I(u0) < 0. Then the weak solution u of problem (1) blows up in a
finite time T∗ in the notion, limt→T−

∗
∥u∥2

H1
0
= ∞. Furthermore, the upper bound of blow-up time T∗ is

given by

T∗ ≤
4(q − 1)∥u0∥2H1

0

q(q − 2)2(d− J(u0))
.

Proof.First we prove J(u(t)) < d and I(u(t)) < 0 for t ∈ [0, T ], where T indicates the maximum time
for which u(x, t) exists.
We have J(u(t)) < J(u0) < d by (6).
If we can choose a t0 ∈ (0, T ) with I(u(t0)) = 0 or J(u(t0)) = d, since J(u(t0)) < d, we must have
I(u(t0)) = 0.
Which implies u(t0) ∈ N and thus d ≤ J(u(t0)), a contradiction.
Hence, J(u(t)) < d and I(u(t)) < 0 for t ∈ [0, T ]. Now define

P(t) =

 t

0
∥u∥2H1

0
dt

Then,
P ′(t) = ∥u∥2H1

0

and
P ′′(t) = 2(u, ut)1 = −2I(u) > 0

Hence for t > 0, P ′(t) ≥ P ′(0) = ∥u0∥2H1
0
> 0.

Now fix t1 > 0. Then for t1 ≤ t < ∞,

P(t) ≥ P(t1) ≥ t1∥u0∥2H1
0
> 0

By Holder’s inequality, we have,

1

4
(P ′(t)− P ′(0))2 ≤

 t

0
∥u∥2H1

0
dt

 t

0
∥ut∥2H1

0
dt (21)

https://doi.org/10.17993/3ctic.2022.112.108-122

Since I(u(t)) < 0, Lemma 2 (iv), gives a γ∗ with 0 < γ∗ < 1 and I(γ∗u) = 0. Therefore,

d ≤
(
1

p
− 1

q

)
(γ∗)p∥∆u∥pp +

1

q2
(γ∗)q∥∇u∥qq

≤
(
1

p
− 1

q

)
∥∆u∥pp +

1

q2
∥∇u∥qq (22)

Now by using (4),(6) and (22) we see that,

P ′′(t) ≥ 2q(d− J(u0)) + 2q

∫ t

0
∥ut∥2H1

0
dt (23)

Then from (21) and (23) it follows that

P ′′(t)P(t)− q

2
(P ′(t)− P ′(0))2 ≥ P(t)2q(d− J(u0)) > 0 for t ∈ [t1,∞) (24)

Now choose T̃ > 0 large enough to introduce,

Q(t) = P(t) + (T̃ − t)∥u0∥2H1
0

for t ∈ [t1, T̃ ]

Then Q(t) ≥ P(t) > 0 for t ∈ [t1, T̃ ], Q′(t) = P ′(t)− P ′(0) > 0 and Q′′(t) = P ′′(t) > 0.
Hence from (24) we observe,

Q(t)Q′′(t)− q

2
(Q′(t))2 ≥ P(t)2q(d− J(u0)) + P ′′(t)(T̃ − t)∥u0∥2H1

0
> 0 (25)

Now define
R(t) = Q(t)−

q−2
2

Then,

R′(t) = −q − 2

2
Q(t)−

q
2Q′(t)

and
R′′(t) =

q − 2

2
Q(t)−

q+2
2

(q
2
(Q′(t))2 −Q(t)Q′′(t)

)
< 0

Hence R(t) is a concave function in [t1, T̃ ] for any sufficiently large T̃ > t1. Also since R(t1) > 0
and R′′(t1) < 0, there appears a finite time T∗ > t1 > 0 having limt→T−

∗
R(t) = 0. That yields

limt→T−
∗
Q(t) = +∞, which in turn gives limt→T−

∗
P(t) = +∞. Hence we get

lim
t→T−

∗

∥u∥2H1
0
= +∞.

To obtain an upper limit for blow-up time we define,

S(t) = P(t) + (T∗ − t)∥u0∥2H1
0
+ σ(t+ φ)2 for t ∈ [0, T∗]

where the constants σ, φ > 0 will be given later.
Then,

S ′(t) = ∥u∥2H1
0
− ∥u0∥2H1

0
+ 2σ(t+ φ) > 2σ(t+ φ) > 0 (26)

also by (23) we get,

S ′′(t) ≥ 2q(d− J(u0)) + 2q

∫ t

0
∥ut∥2H1

0
dt+ 2σ (27)

By Schwartz’s inequality, we have,
∫ t

0

d

dt
∥u∥2H1

0
dt ≤ 2

∫ t

0
∥u∥2H1

0
dt

∫ t

0
∥ut∥2H1

0
dt (28)

https://doi.org/10.17993/3ctic.2022.112.108-122

3C TIC. Cuadernos de desarrollo aplicados a las TIC. ISSN: 2254-6529 Ed. 41 Vol. 11 N.º 2  August - December 2022 

118



Proof. Let ηj = 1− 1
j , j = 1, 2, . . . then ηj → 1 when j → ∞. Take into account the below problem:




ut −∆ut +∆(|∆u|p−2∆u)− div(|∇u|q−2∇u) = −div(|∇u|q−2∇u log |∇u|) if (x, t) ∈ Ω× (0, T ),

u = ∂u
∂ν = 0 if (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = ηju0(x) = uj0 if x ∈ Ω.
(20)

Since I(u0) > 0, lemma (2)(iv) gives a γ∗ > 1 with I(γ∗u0) = 0.
Again from lemma (2)(iii) and (iv) we gain I(ηju0) > 0 and J(ηju0) < J(u0) since ηj < 1 < γ∗.
Thus we have J(uj0) < d and I(uj0) > 0.
Then by Theorem(2), for each j problem (20) has a global weak solution uj ∈ L∞(0, T ;W p−2

0 (Ω)) with
ujt ∈ L2(0, T ;L2(Ω)) which satisfies the energy inequality,

 t

0
∥ujτ∥2H1

0
dτ + J(uj(t)) ≤ J(uj0) for 0 ≤ t < ∞.

Thus we have  t

0
∥ujτ∥2H1

0
dτ + J(uj) < d for 0 ≤ t < ∞.

Now by applying ideas similar to the one used to prove Theorem(1), we obtain a subsequence of {uj}j∈N
converging to a function u, which is a weak solution of problem (1). It also fulfils the energy inequality
(16). The solution’s uniqueness can also be proved as in Theorem(1).
Hence the proof is over.

The following theorem gives the blow-up of solutions for the subcritical initial energy and an upper
bound for blow up time.

Theorem 4. (Blow up for J(u0) < d)
Let u0 ∈ H2

0 (Ω)\{0}, J(u0) < d and I(u0) < 0. Then the weak solution u of problem (1) blows up in a
finite time T∗ in the notion, limt→T−

∗
∥u∥2

H1
0
= ∞. Furthermore, the upper bound of blow-up time T∗ is

given by

T∗ ≤
4(q − 1)∥u0∥2H1

0

q(q − 2)2(d− J(u0))
.

Proof.First we prove J(u(t)) < d and I(u(t)) < 0 for t ∈ [0, T ], where T indicates the maximum time
for which u(x, t) exists.
We have J(u(t)) < J(u0) < d by (6).
If we can choose a t0 ∈ (0, T ) with I(u(t0)) = 0 or J(u(t0)) = d, since J(u(t0)) < d, we must have
I(u(t0)) = 0.
Which implies u(t0) ∈ N and thus d ≤ J(u(t0)), a contradiction.
Hence, J(u(t)) < d and I(u(t)) < 0 for t ∈ [0, T ]. Now define

P(t) =

 t

0
∥u∥2H1

0
dt

Then,
P ′(t) = ∥u∥2H1

0

and
P ′′(t) = 2(u, ut)1 = −2I(u) > 0

Hence for t > 0, P ′(t) ≥ P ′(0) = ∥u0∥2H1
0
> 0.

Now fix t1 > 0. Then for t1 ≤ t < ∞,

P(t) ≥ P(t1) ≥ t1∥u0∥2H1
0
> 0

By Holder’s inequality, we have,

1

4
(P ′(t)− P ′(0))2 ≤

 t

0
∥u∥2H1

0
dt

 t

0
∥ut∥2H1

0
dt (21)
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Since I(u(t)) < 0, Lemma 2 (iv), gives a γ∗ with 0 < γ∗ < 1 and I(γ∗u) = 0. Therefore,

d ≤
(
1

p
− 1

q

)
(γ∗)p∥∆u∥pp +

1

q2
(γ∗)q∥∇u∥qq

≤
(
1

p
− 1

q

)
∥∆u∥pp +

1

q2
∥∇u∥qq (22)

Now by using (4),(6) and (22) we see that,

P ′′(t) ≥ 2q(d− J(u0)) + 2q

∫ t

0
∥ut∥2H1

0
dt (23)

Then from (21) and (23) it follows that

P ′′(t)P(t)− q

2
(P ′(t)− P ′(0))2 ≥ P(t)2q(d− J(u0)) > 0 for t ∈ [t1,∞) (24)

Now choose T̃ > 0 large enough to introduce,

Q(t) = P(t) + (T̃ − t)∥u0∥2H1
0

for t ∈ [t1, T̃ ]

Then Q(t) ≥ P(t) > 0 for t ∈ [t1, T̃ ], Q′(t) = P ′(t)− P ′(0) > 0 and Q′′(t) = P ′′(t) > 0.
Hence from (24) we observe,

Q(t)Q′′(t)− q

2
(Q′(t))2 ≥ P(t)2q(d− J(u0)) + P ′′(t)(T̃ − t)∥u0∥2H1

0
> 0 (25)

Now define
R(t) = Q(t)−

q−2
2

Then,

R′(t) = −q − 2

2
Q(t)−

q
2Q′(t)

and
R′′(t) =

q − 2

2
Q(t)−

q+2
2

(q
2
(Q′(t))2 −Q(t)Q′′(t)

)
< 0

Hence R(t) is a concave function in [t1, T̃ ] for any sufficiently large T̃ > t1. Also since R(t1) > 0
and R′′(t1) < 0, there appears a finite time T∗ > t1 > 0 having limt→T−

∗
R(t) = 0. That yields

limt→T−
∗
Q(t) = +∞, which in turn gives limt→T−

∗
P(t) = +∞. Hence we get

lim
t→T−

∗

∥u∥2H1
0
= +∞.

To obtain an upper limit for blow-up time we define,

S(t) = P(t) + (T∗ − t)∥u0∥2H1
0
+ σ(t+ φ)2 for t ∈ [0, T∗]

where the constants σ, φ > 0 will be given later.
Then,

S ′(t) = ∥u∥2H1
0
− ∥u0∥2H1

0
+ 2σ(t+ φ) > 2σ(t+ φ) > 0 (26)

also by (23) we get,

S ′′(t) ≥ 2q(d− J(u0)) + 2q

∫ t

0
∥ut∥2H1

0
dt+ 2σ (27)

By Schwartz’s inequality, we have,
∫ t

0

d

dt
∥u∥2H1

0
dt ≤ 2

∫ t

0
∥u∥2H1

0
dt

∫ t

0
∥ut∥2H1

0
dt (28)
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Therefore,

(S ′(t))2 = 4

(
1

2

∫ t

0

d

dt
∥u∥2H1

0
dt+ σ(t+ φ)

)2

≤ 4

(∫ t

0

d

dt
∥u∥2H1

0
dt+ σ(t+ φ)2

)(∫ t

0

d

dt
∥ut∥2H1

0
dt+ σ

)

= 4
(
S(t)− (T∗ − t)∥u0∥2H1

0

)(∫ t

0

d

dt
∥ut∥2H1

0
dt+ σ

)

≤ 4S(t)
(∫ t

0

d

dt
∥ut∥2H1

0
dt+ σ

)
(29)

Now by applying (27) and (29) we can see that,

S(t)S ′′(t)− q

2
(S ′(t))2 ≥ S(t)(2q(d− J(u0))− 2σ(q − 1))

If σ ∈
(
0, q(d−J(u0))

q−1

)
, then

S(t)S ′′(t)− q

2
(S ′(t))2 > 0.

Also we have S(0) = T∗∥u0∥2H1
0
+ σφ2 > 0 and S ′(0) = 2σφ > 0. Then by Levine’s Concavity approach,

we obtain the upper bound for blow-up as,

T∗ ≤
S(0)

( q2 − 1)S ′(0)
=

T∗∥u0∥2H1
0

(q − 2)σφ
+

φ

q − 2

Therefore,

T∗ ≤
σφ2

(q − 2)σφ− ∥u0∥2H1
0

thus we must have

φ ∈

(
(q − 1)∥u0∥2H1

0

q(q − 2)(d− J(u0))
,∞

)

Let υ = σφ ∈
(
0, q(d−J(u0))φ

q−1

)
, then T∗ ≤ φυ

(q−2)υ−∥u0∥H1
0

.

Now let h(φ, υ) = φυ
(q−2)υ−∥u0∥H1

0

. Since h is monotonically decreasing concerning υ, we have

inf
{(φ,υ)}

h(φ, υ) = inf
{φ}

h

(
φ,

q(d− J(u0))φ

q − 1

)

= inf
{b}

k(φ)

where,

k(φ) = h

(
φ,

q(d− J(u0))φ

q − 1

)
=

φ2q(d− J(u0))

q(q − 2)(d− J(u0))φ− (q − 1)∥u0∥H1
0

now since k(φ) takes the minimum at φ∗ =
2(q−1)∥u0∥H1

0
q(q−2)(d−J(u0))

we can conclude that,

T∗ ≤ k(φ∗) =
4(q − 1)∥u0∥2H1

0

q(q − 2)2(d− J(u0))
.□

The following theorem show that the weak solution of the system blow-up when the initial energy of
the system is critical.

Theorem 5. (Blow up for J(u0) = d)
Let u0 ∈ W 2,p

0 (Ω)\{0}, J(u0) = d and I(u0) < 0, then the weak solution u(t) of problem (1) blows up in
the sense, there appears a T∗ < ∞ such that limt→T−

∗
∥u∥2

H1
0
= ∞.
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Proof.Since J(u0) = d > 0 and J(u) is continuous with respect to t, there appears a t0 with
J(u(x, t)) > 0 for 0 < t ≤ t0. Also, it is easy to see I(u(t)) < 0 for every t. Therefore from the energy
inequality,

∫ t0
0 ∥uτ∥2H1

0
dτ + J(u(t0)) < J(u0) = d, it follows that J(u(t0)) < d.

Now choose t = t0 as initial time, we have J(u(t0)) < d and I(u(t0)) < 0. Now define

P(t) =

∫ t

t0

∥u∥2H1
0

for t > t0

and the rest of proof resembles the proof of Theorem (4). □
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Therefore,

(S ′(t))2 = 4

(
1

2

∫ t

0

d

dt
∥u∥2H1

0
dt+ σ(t+ φ)

)2

≤ 4

(∫ t

0

d

dt
∥u∥2H1

0
dt+ σ(t+ φ)2

)(∫ t

0

d

dt
∥ut∥2H1

0
dt+ σ

)

= 4
(
S(t)− (T∗ − t)∥u0∥2H1

0

)(∫ t

0

d

dt
∥ut∥2H1

0
dt+ σ

)

≤ 4S(t)
(∫ t

0

d

dt
∥ut∥2H1

0
dt+ σ

)
(29)

Now by applying (27) and (29) we can see that,

S(t)S ′′(t)− q

2
(S ′(t))2 ≥ S(t)(2q(d− J(u0))− 2σ(q − 1))

If σ ∈
(
0, q(d−J(u0))

q−1

)
, then

S(t)S ′′(t)− q

2
(S ′(t))2 > 0.

Also we have S(0) = T∗∥u0∥2H1
0
+ σφ2 > 0 and S ′(0) = 2σφ > 0. Then by Levine’s Concavity approach,

we obtain the upper bound for blow-up as,

T∗ ≤
S(0)

( q2 − 1)S ′(0)
=

T∗∥u0∥2H1
0

(q − 2)σφ
+

φ

q − 2

Therefore,

T∗ ≤
σφ2

(q − 2)σφ− ∥u0∥2H1
0

thus we must have

φ ∈

(
(q − 1)∥u0∥2H1

0

q(q − 2)(d− J(u0))
,∞

)

Let υ = σφ ∈
(
0, q(d−J(u0))φ

q−1

)
, then T∗ ≤ φυ

(q−2)υ−∥u0∥H1
0

.

Now let h(φ, υ) = φυ
(q−2)υ−∥u0∥H1

0

. Since h is monotonically decreasing concerning υ, we have

inf
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h(φ, υ) = inf
{φ}

h

(
φ,

q(d− J(u0))φ

q − 1

)

= inf
{b}

k(φ)

where,
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q − 1
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0
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