[4] R. Mori and T. Tanaka, “Performance of polar codes with the con- struction using density
evolution,” IEEE Commun. Lett., vol. 13, no. 7, pp. 519–521, Jul. 2009.
[5] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inf. Theory, vol. 59, no. 10, pp.
6562–6582, Oct. 2013.
[6] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans. Commun., vol. 60, no. 11,
pp. 3221–3227, Nov. 2012.
[7] M. Mondelli, S. H. Hassani, and R. Urbanke, “Construction of polar codes with sublinear
complexity,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp.
1853–1857.
[8] G. He et al., “Beta-expansion: A theoretical framework for fast and recursive construction of polar
codes,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Singapore, Dec. 2017, pp. 1–6.
[9] C. Condo, S. A. Hashemi, and W. J. Gross, “Efficient bit-channel relia- bility computation for
multi-mode polar code encoders and decoders,” in Proc. IEEE Int. Workshop Signal Process.
Syst. (SiPS), Lorient, France, Oct. 2017, pp. 1–6.
[10] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “From polar to Reed–Muller codes: A technique
to improve the finite-length performance,” IEEE Trans. Commun., vol. 62, no. 9, pp. 3084–
3091, Sep. 2014.
[11] V. Bioglio, F. Gabry, I. Land, and J.-C. Belfiore, “Minimum-distance based construction of multi-
kernel polar codes,” in Proc. IEEE Glob. Commun. Conf. (GLOBECOM), Singapore, Dec.
2017, pp. 1–6.
[12] M. Mondelli, S. H. Hassani, and R. L. Urbanke, “Scaling exponent of list decoders with
applications to polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 9, pp. 4838–4851, Sept. 2015.
[13] J. Guo, M. Qin, A. G. I. Fábregas, and P. H. Siegel, “Enhanced belief propagation decoding of
polar codes through concatenation,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, HI,
USA, Jun. 2014, pp. 2987–2991.
[14] U. U. Fayyaz and J. R. Barry, “Low-complexity soft-output decoding of polar codes,” IEEE J.
Sel. Areas Commun., vol. 32, no. 5, pp. 958–966, May 2014.
[15] A. Balatsoukas-Stimming, A. J. Raymond, W. J. Gross, and A. Burg, “Hardware architecture for
list successive cancellation decoding of polar codes,” IEEE Trans. Circuits Syst. II, Exp. Briefs,
vol. 61, no. 8, pp. 609–613, Aug. 2014.
[16] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based suc- cessive cancellation list
decoding of polar codes,” IEEE Trans. Signal Process., vol. 63, no. 19, pp. 5165–5179, Oct.
2015.
[17] C. Leroux, A. J. Raymond, G. Sarkis, and W. J. Gross, “A semi-parallel successive-cancellation
decoder for polar codes,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 289–299, Jan. 2013.
[18] B. L. Gal, C. Leroux, and C. Jego, “Software polar decoder on an embed- ded processor,” in Proc.
IEEE Workshop Signal Process. Syst. (SiPS), Belfast, U.K., Oct. 2014, pp. 180–185.
[19] O. Afisiadis, A. Balatsoukas-Stimming, and A. Burg, “A low-complexity improved successive
cancellation decoder for polar codes,” in Proc. IEEE Asilomar Conf. Signals Syst. Comput.,
Pacific Grove, CA, USA, Nov. 2014, pp. 2116–2120.
[20] C. Condo, F. Ercan, and W. J. Gross, “Improved successive cancellation flip decoding of polar
codes based on error distribution,” in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC),
Barcelona, Spain, Apr. 2018, pp. 19–24.
[21] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp.
2213–2226, May 2015.
[22] S. A. Hashemi, A. Balatsoukas-Stimming, P. Giard, C. Thibeault, and W. J. Gross, “Partitioned
successive-cancellation list decoding of polar codes,” in Proc. IEEE Int. Conf. Acoust. Speech
Signal Process. (ICASSP), Shanghai, China, Mar. 2016, pp. 957–960.
[23] S. A. Hashemi, M. Mondelli, S. H. Hassani, R. L. Urbanke, and W. J. Gross, “Partitioned list
decoding of polar codes: Analysis and improvement of finite length performance,” in Proc.
IEEE Glob. Commun. Conf. (GLOBECOM), Singapore, Dec. 2017, pp. 1–7.
https://doi.org/10.17993/3ctecno.2022.v11n2e42.90-99
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed. 42 Vol. 11 N.º 2 August - December 2022
99