[7]
Chu, Y., Wu, Y., and Cheng, L. (2022). Blow up and Decay for a Class of
p
-Laplacian
Hyperbolic Equation with Logarithmic Nonlinearity. Taiwanese Journal of Mathematics, 1(1),
1-23.
[8]
Chung, S. Y., and Hwang, J.. (2022). Blowup conditions of nonlinear parabolic equations and
systems under mixed nonlinear boundary conditions. Bound Value Probl 2022, 46.
[9]
Chung, S. Y., and Choi, M. J., (2017). A New Condition for the Concavity Method of Blowup
Solutions to Semilinear Heat Equations. arXiv preprint arXiv:1705.05629.
[10]
Chung, S. Y., and Choi, M. J., (2018). A new condition for the concavity method of blowup
solutions to p-Laplacian parabolic equations. Journal of Differential Equations, 265(12), 6384-6399.
[11]
Chung, S. Y., Choi, M. J., and Hwang, J. (2019). A condition for blowup solutions to discrete
p-Laplacian parabolic equations under the mixed boundary conditions on networks. Boundary Value
Problems, 2019(1), 1-21.
[12]
Dai, H., and Zhang, H. (2014). Energy decay and nonexistence of solution for a reaction-diffusion
equation with exponentinonlinearityity. Boundary Value Problems, 2014(1), 1-9.
[13]
Di, H. and Shang, Y. (2014), Global existence and nonexistence of solutions for the nonlinear
pseudo-parabolic equation with a memory term, Math. Meth. Appl. Sci., 38: 3923– 3936.
[14]
Di, H., and Shang, Y. (2014), Blow-up of solutions for a class of nonlinear pseudoparabolic
equations with a memory term. Abstract and Applied Analysis (Vol. 2014). Hindawi.
[15]
Erdem, D. , (1999). Blowup of solutions to quasilinear parabolic equations. Applied mathematics
letters, 12(3), 65-69.
[16]
Fujita, H. (1966). On the blowing up of solutions fo the Cauchy problem for
ut
=∆
u
+
u1+α
,J.
Fac. Sci. Univ. Tokyo. 13 , 109-124.
[17]
Fujita, H.(1968). On some nonexistence and non-uniqueness theorems for nonlinear parabolic
equations, In: Proc. Symp. Math., 18, 105–113.
[18]
Friedman, A. (1965). Remarks on nonlinear parabolic equations. Proc. Symp. in Appl. Math.
AMS. 13, 3-23.
[19]
Galaktionov, V. A. (1982). The conditions for there to be no global solutions of a class of
quasilinear parabolic equations. USSR Computational Mathematics and Mathematical Physics, 22(2),
73-90.
[20]
Gelfand, I. M. (1959) Some problems in the theory of quasi-linear equations, Uspekhi Mat. Nauk.
14, 87-158.
[21]
Han, Y., Gao, W. and Li, H. (2015), Blow-up of solutions to a semilinear heat equation with a
viscoelastic term and a nonlinear boundary flux, C.R.Acad.Sci.Paris. Ser.I, 353, 825-830.
[22]
Hayakawa, K.(1973), On nonexistence of global solutions of some semilinear parabolic differential
equations, Proc. Jpn. Acad. 49 503-505.
[23]
Junning, Z. (1993). Existence and nonexistence of solutions for
ut
=
÷
(
|∇u|p−2∇u
)+
f
(
∇u, u, x, t
).
J. Math. Anal. Appl., 172(1), 130-146.
[24]
Kaplan, S. (1963). On the growth of solutions of quasi-linear parabolic equations, Comm. Pure
Appl. Math. 16, 305-330.
[25]
Kobayashi, K. Sirao, T. and Tanaka, H. (1977). On the growing up problem for semilinear
heat equations, J. Math. Soc. Japan. 29, 407-424.
https://doi.org/10.17993/3cemp.2022.110250.94-102
[26]
Korpusov, M.O. and Sveshnikov, A.G. (2003). Three dimensional non-linear evolutionary
pseudo - parabolic equations in mathematical physics. Zhurnal Vychislitel’no
˘
i Matematiki i Matema-
tichesko˘
i Fiziki 43(12) 1835–1869.
[27]
Lakshmipriya, N., Gnanavel, S., Balachandran, K., and Ma, Y. K. (2022). Existence and
blowup of weak solutions of a pseudo-parabolic equation with logarithmnonlinearityity. Boundary
Value Problems, 2022(1), 1-17.
[28]
Levine, H. A.(1973). Some nonexistence and instability theorems for solutions of formally
parabolic equations of the form Pu
t=−Au +F(u),Arch. Ration. Mech. Anal. 51, 371-386.
[29]
Levine, H. A. and Payne, L. E., (1974).Nonexistence theorems for the heat equation with
nonlinear boundary conditions and for the porous medium equation backward in time, J. Differential
Equations. 16, 319-334.
[30]
Levine, H. A. and Payne, L. E., (1974)Some nonexistence theorems for initial-boundary value
problems with nonlinear boundary constraints,Proc. Amer. Math. Soc. 46, 277-284.
[31]
Li, X., and Fang, Z. B. (2022). New blowup criteria for a semilinear pseudo-parabolic equation
with genernonlinearityity. Mathematical Methods in the Applied Sciences.
[32]
Li, H. and Han, Y. (2017), Blow-up of solutions to a viscoelastic parabolic equation with positive
initial energy. Bound. Value Probl., 1:1-9.
[33]
Messaoudi, S. A., and Talahmeh, A. A. (2019), Blow up in a semilinear pseudo-parabolic
equation with variable exponents, Annalli Dell Universita Di Ferrara, 65(2), 311-326.
[34]
Narayanan, L., and Soundararajan, G. (2022). Existence and blowup studies of a
p
(
x
)-
Laplacian parabolic equation with memory. Mathematical Methods in the Applied Sciences, 45(14),
8412-8429.
[35]
Narayanan, L., and Soundararajan, G. (2022). Nonexistence of global solutions of a viscoelastic
p
(
x
)-Laplacian equation with logarithmnonlinearityity. In AIP Conference Proceedings (Vol. 2451,
No. 1, p. 020024). AIP Publishing LLC.
[36]
Narayanan, L., and Soundararajan, G.(2021). Quasilinear p (x)-Laplacian parabolic problem:
upper bound for blowup time. In Journal of Physics: Conference Series (Vol. 1850, No. 1, p. 012007).
IOP Publishing.
[37]
Payne, L.E., Philippin, G.A. and Piro, S.V. (2010), Blowup phenomena for a semilinear
heat equation with nonlinear boundary condition, II, Nonlinear Anal. 73 971–978.
[38]
Peral, I. and Vázquez, J. L.(1995), On the stability or instability of the singular solution of the
semilinear heat equation with exponential reaction term, Arch. Ration. Mech. Anal. 129, 201-224.
[39]
Philippin, G.A. and Proytcheva, V. (2006). Some remarks on the asymptotic behaviour of
the solutions of a class of parabolic problems, Math. Methods Appl. Sci. 29 297–307.
[40]
Prusa, V. and Rajagopal, K. R.(2018). A New Class of Models to Describe the Response
of Electrorheological and other Field Dependent Fluids, Generalised Models and Non-classical
Approaches in Complex Materials.
[41]
Ruzhansky, M., Sabitbek, B., and Torebek, B. (2022). Global existence and blowup of
solutions to porous medium equation and pseudo-parabolic equation, I. Stratified groups. manuscripta
mathematica, 1-19.
[42]
Ruzicka, M. (2000). Electrorheological fluids: Modeling and mathematical theory, Lecture Notes
in Math., Vol.1748, Springer-Verlag, Berlin.
https://doi.org/10.17993/3cemp.2022.110250.94-102
101
3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376
Ed. 50 Vol. 11 N.º 2 August - December 2022