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1 INTRODUCTION

Perhaps the most famous fixed-point theorem is the Banach’s contraction principle which has several
applications. Motivated by this we have considered in this review article, applications of other well-
known fixed-point theorems in various kinds of Banach spaces. This article should be of interest to
mathematicians working in the fields of fixed-point theory and functional analysis.
In Section 1 we apply the Browder’s and Göhde’s fixed point theorem for the existence of solutions
of operator equations involving asymptotically nonexpansive mappings in uniformly convex Banach
spaces. In Section 2 we apply Kirk’s fixed point theorem for the existence of solutions of the operator
equation x− T x = f in reflexive Banach spaces and in Section 3 we apply the Sadovskii fixed point
theorem for existence of solutions of the operator equation x− T x = f in arbitrary Banach spaces.

2 Application of Browder’s and Göhde’s fixed point theorem

Definition 1. [1] A mapping T from a metric space (X, d) into another metric space (Y, ρ) is said to
satisfy Lipschitz condition on X if there exists a constant L > 0 such that

ρ(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X. If L is the least number for which Lipschitz condition holds, then L is called Lipschitz
constant. If L = 1, the mapping is said to be nonexpansive.

Definition 2. [2] Let K be a nonempty subset of a Banach space X. A mapping T : K → K is
said to be asymptotically nonexpansive if for each n ∈ N there exists a positive constant kn ≥ 1 with
limn→∞ kn = 1 such that

||Tnx− Tny|| ≤ kn||x− y||

for all x, y ∈ K.

The Browder’s and Göhde’s fixed point theorem is as follows:

Theorem 1. [3] Let X be a uniformly convex Banach space and C a nonempty, closed, convex and
bounded subset of X. Then every nonexpansive mapping T : C → C has a fixed point in C.

We now state the main theorem of Section 1.

Theorem 2. Let X be a uniformly convex Banach space and K a nonempty subset of X. Let T : K → K
be an asymptotically nonexpansive mapping and fn ∈ K, then the operator equation

knx = Tnx+ fn

where n ∈ N and kn is the Lipschitz constant of the iterates Tn, has a solution if and only if, for any
x1 ∈ K, the sequence of iterates {xn} in K defined by

knxn+1 = Tnxn + fn

n ∈ N is bounded.

Proof. For every n ∈ N, let Tfn be defined to be a mapping from K into K by

Tfn(u) =
1

kn
[Tnu+ fn].

Then un ∈ K is a solution of
x =

1

kn
[Tnx+ fn]

https://doi.org/10.17993/3ctic.2022.112.72-79

if and only if un is a fixed point of Tfn . Since T is asymptotically nonexpansive it follows that Tfn is
nonexpansive for all n ∈ N.

||Tfn(x)− Tfn(y)|| =
1

kn
||Tn(x)− Tn(y)|| ≤ ||x− y||.

Suppose Tfn has a fixed point un ∈ K. Then

||xn+1 − un|| = || 1
kn

[Tnxn + fn]− un|| = ||Tfn(xn)− Tfn(un)|| ≤ ||xn − un||,

Tfn being nonexpasive. Since {||xn−un||} is non-increasing, hence {xn} is bounded. Conversely, suppose
that{xn} is bounded. Let d = diam({xn}) and

Bd[x] = {y ∈ K : ||x− y|| ≤ d}

for each x ∈ K. Set
Cn =

⋂
i≥n

Bd[xi] ⊂ K.

Hence Cn is a nonempty, convex set for each n ∈ N. Now we claim that Tfn(Cn) ⊂ Cn+1. Let y ∈ Bd[xn]
which implies ||y − xn|| ≤ d. Since Tfn is nonexpansive, we get

||Tfn(y)− Tfn(xn)|| ≤ d

|| 1
kn

[Tn(y) + fn]−
1

kn
[Tn(xn) + fn]|| ≤ d

or
|| 1
kn

[Tn(y) + fn]− xn+1|| ≤ d

or
1

kn
[Tn(y) + fn] ∈ Bd[xn+1]

giving
Tfn(y) ∈ Bd[xn+1]

proving that Tfn(Cn) ⊂ Cn+1.

Let C =
⋃

n∈NCn. Since Cn increases with n, C is a closed, convex and bounded subset of K. We
can easily see that Tfn maps C into C.

Tfn(C) = Tfn(
⋃
n∈N

Cn) ⊆ Tfn(
⋃
n∈N

Cn) =
⋃
n∈N

Tfn(Cn) ⊆
⋃
n∈N

Cn+1 = C.

Applying the Browder’s and Göhde’s theorem to Tfn and C we get a fixed point of Tfn in C. Since
C ⊂ K, we obtain a fixed point of Tfn in K.

3 Application of Kirk’s Fixed Point Theorem

Let us recall some definitions and results that we shall require for the proof of the Main Theorem of
Section 2.

Definition 3. [2] Let (X, ρ) and (M,d) be metric spaces. A mapping f : X → M is said to be
nonexpansive if for each x, y ∈ X,

d(f(x), f(y)) ≤ ρ(x, y).

Definition 4. [1] A convex subset K of a Banach space X is said to have normal structure if each
bounded, convex subset S of K with diam S > 0 contains a nondiametral point.
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applications. Motivated by this we have considered in this review article, applications of other well-
known fixed-point theorems in various kinds of Banach spaces. This article should be of interest to
mathematicians working in the fields of fixed-point theory and functional analysis.
In Section 1 we apply the Browder’s and Göhde’s fixed point theorem for the existence of solutions
of operator equations involving asymptotically nonexpansive mappings in uniformly convex Banach
spaces. In Section 2 we apply Kirk’s fixed point theorem for the existence of solutions of the operator
equation x− T x = f in reflexive Banach spaces and in Section 3 we apply the Sadovskii fixed point
theorem for existence of solutions of the operator equation x− T x = f in arbitrary Banach spaces.

2 Application of Browder’s and Göhde’s fixed point theorem

Definition 1. [1] A mapping T from a metric space (X, d) into another metric space (Y, ρ) is said to
satisfy Lipschitz condition on X if there exists a constant L > 0 such that

ρ(Tx, Ty) ≤ Ld(x, y)

for all x, y ∈ X. If L is the least number for which Lipschitz condition holds, then L is called Lipschitz
constant. If L = 1, the mapping is said to be nonexpansive.
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said to be asymptotically nonexpansive if for each n ∈ N there exists a positive constant kn ≥ 1 with
limn→∞ kn = 1 such that
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for all x, y ∈ K.

The Browder’s and Göhde’s fixed point theorem is as follows:

Theorem 1. [3] Let X be a uniformly convex Banach space and C a nonempty, closed, convex and
bounded subset of X. Then every nonexpansive mapping T : C → C has a fixed point in C.

We now state the main theorem of Section 1.

Theorem 2. Let X be a uniformly convex Banach space and K a nonempty subset of X. Let T : K → K
be an asymptotically nonexpansive mapping and fn ∈ K, then the operator equation

knx = Tnx+ fn

where n ∈ N and kn is the Lipschitz constant of the iterates Tn, has a solution if and only if, for any
x1 ∈ K, the sequence of iterates {xn} in K defined by

knxn+1 = Tnxn + fn

n ∈ N is bounded.

Proof. For every n ∈ N, let Tfn be defined to be a mapping from K into K by

Tfn(u) =
1

kn
[Tnu+ fn].

Then un ∈ K is a solution of
x =

1

kn
[Tnx+ fn]
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if and only if un is a fixed point of Tfn . Since T is asymptotically nonexpansive it follows that Tfn is
nonexpansive for all n ∈ N.

||Tfn(x)− Tfn(y)|| =
1

kn
||Tn(x)− Tn(y)|| ≤ ||x− y||.

Suppose Tfn has a fixed point un ∈ K. Then

||xn+1 − un|| = || 1
kn

[Tnxn + fn]− un|| = ||Tfn(xn)− Tfn(un)|| ≤ ||xn − un||,

Tfn being nonexpasive. Since {||xn−un||} is non-increasing, hence {xn} is bounded. Conversely, suppose
that{xn} is bounded. Let d = diam({xn}) and

Bd[x] = {y ∈ K : ||x− y|| ≤ d}

for each x ∈ K. Set
Cn =

⋂
i≥n

Bd[xi] ⊂ K.

Hence Cn is a nonempty, convex set for each n ∈ N. Now we claim that Tfn(Cn) ⊂ Cn+1. Let y ∈ Bd[xn]
which implies ||y − xn|| ≤ d. Since Tfn is nonexpansive, we get

||Tfn(y)− Tfn(xn)|| ≤ d

|| 1
kn

[Tn(y) + fn]−
1

kn
[Tn(xn) + fn]|| ≤ d

or
|| 1
kn

[Tn(y) + fn]− xn+1|| ≤ d

or
1

kn
[Tn(y) + fn] ∈ Bd[xn+1]

giving
Tfn(y) ∈ Bd[xn+1]

proving that Tfn(Cn) ⊂ Cn+1.

Let C =
⋃

n∈NCn. Since Cn increases with n, C is a closed, convex and bounded subset of K. We
can easily see that Tfn maps C into C.

Tfn(C) = Tfn(
⋃
n∈N

Cn) ⊆ Tfn(
⋃
n∈N

Cn) =
⋃
n∈N

Tfn(Cn) ⊆
⋃
n∈N

Cn+1 = C.

Applying the Browder’s and Göhde’s theorem to Tfn and C we get a fixed point of Tfn in C. Since
C ⊂ K, we obtain a fixed point of Tfn in K.

3 Application of Kirk’s Fixed Point Theorem

Let us recall some definitions and results that we shall require for the proof of the Main Theorem of
Section 2.

Definition 3. [2] Let (X, ρ) and (M,d) be metric spaces. A mapping f : X → M is said to be
nonexpansive if for each x, y ∈ X,

d(f(x), f(y)) ≤ ρ(x, y).

Definition 4. [1] A convex subset K of a Banach space X is said to have normal structure if each
bounded, convex subset S of K with diam S > 0 contains a nondiametral point.
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The following theorem gives application of the Browder-Göhde-Kirk’s theorem for the existence of
solutions of the operator equation

x− Tx = f.

It is known that every uniformly convex Banach space is reflexive. We generalize the theorem below to
reflexive Banach spaces using Kirk’s fixed point theorem

Theorem 3. [3] Let X be a uniformly convex Banach space, f an element in X and T : X → X a
nonexpansive mapping, then the operator equation

x− Tx = f

has a solution x if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X defined by
xn+1 = Txn + f , n ∈ N0 is bounded.

Definition 5. [1] A Banach space X is said to satisfy the Opial condition if whenever a sequence
{xn} in X converges weakly to x0 ∈ X, then

lim
n→∞

inf ∥xn − x0∥ < lim
n→∞

inf ∥xn − x∥

for all x ∈ X, x ̸= x0.

Lemma 1. [3] Let X be a reflexive Banach space with the Opial condition. Then X has normal
structure.

Lemma 2. [3] A closed subspace of a reflexive Banach space is reflexive.

Now we state the Kirk’s fixed point theorem.

Theorem 4. [3] Let X be a Banach space and C a nonempty weakly compact, convex subset of X
with normal structure, then every nonexpansive mapping T : C → C has a fixed point.

We state the main theorem of Section 2.

Theorem 5. Let X be a reflexive Banach space satisfying Opial condition. Let f ∈ X and T : X → X
be a nonexpansive mapping. Then the operator equation

x− Tx = f

has a solution x if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X defined by
xn+1 = Txn + f , n ∈ N0 is bounded.

Proof. Let Tf be the mapping from X into X given by

Tf (u) = Tu+ f.

Then u is a solution of
x− Tx = f

if and only if u is a fixed point of Tf . Clearly Tf is nonexpansive. Suppose Tf has a fixed point u ∈ X.
Then for all n ∈ N,

∥xn+1 − u∥ ≤ ∥xn − u∥.

Hence {xn} is bounded.

Conversely, suppose that {xn} is bounded. Let d = diam({xn}) and

Bd[x] = {y ∈ X : ∥x− y∥ ≤ d}

for each x ∈ X. Set Cn =
⋂

i≥nBd[xi]. Then Cn is a nonempty convex set for each n, and

Tf (Cn) ⊂ Cn+1.

https://doi.org/10.17993/3ctic.2022.112.72-79

Let C be the closure of the union of Cn for n ∈ N,

C =
⋃
n∈N

Cn.

Since Cn increases with n, C is a closed, convex and bounded subset of X. It is known that [1] bounded,
closed and convex subsets of reflexive Banach spaces are weakly compact, hence we get that C is weakly
compact.

Now since
Tf (C) = Tf (

⋃
Cn) ⊆ Tf (

⋃
Cn) =

⋃
Tf (Cn) ⊆

⋃
Cn+1 = C,

we get that Tf maps C into itself. By Lemma 1.3.6, C is a reflexive Banach space. Now X satisfies
Opial condition and C being a closed subset of X, will also satisfy Opial condition. Hence by Lemma
1.3.5, C has normal structure. Finally, applying Kirk’s fixed point theorem we get that Tf has a fixed
point in C which proves the theorem.

4 Application of Sadovskii Fixed Point Theorem

We recall some definitions

Definition 6. [1] Let (M,ρ) denote a complete metric space and let B denote the collection of
nonempty and bounded subsets of M . Define the Kuratowski measure of noncompactness α : B → R+

by taking for A ∈ B,
α(A)=inf{ϵ > 0 A is contained in the union of a finite number of sets in B each
having diameter less than ϵ}.
If M is a Banach space the function α has the following properties for A,B ∈ B
1. α(A) = 0 ⇔ A is compact,
2. α(A+B) ≤ α(A) + α(B).

Definition 7. [2] Let K be a subset of a metric space M . A mapping T : K → M is said to be
condensing if T is bounded and continuous and if

α(T (D)) < α(D)

for all bounded subsets D of M for which α(D) > 0.

We state the Sadovskii fixed point theorem.

Theorem 6. [2] Let K be a nonempty, bounded closed and convex subset of a Banach space and let
T : K → K be a condensing mapping, then T has a fixed point.

The main result of section 3 is the following:

Theorem 7. Let X be an arbitrary Banach space, let f ∈ X and T : X → X be a condensing mapping,
then the operator equation

x− Tx = f

has a solution if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X, defined by
xn+1 = Txn + f , n ∈ N0 is bounded.

Proof. Let the mapping Tf : X → X be defined by

Tf (u) = Tu+ f.

Then u is a solution of the operator equation

x− Tx = f
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reflexive Banach spaces using Kirk’s fixed point theorem

Theorem 3. [3] Let X be a uniformly convex Banach space, f an element in X and T : X → X a
nonexpansive mapping, then the operator equation

x− Tx = f

has a solution x if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X defined by
xn+1 = Txn + f , n ∈ N0 is bounded.

Definition 5. [1] A Banach space X is said to satisfy the Opial condition if whenever a sequence
{xn} in X converges weakly to x0 ∈ X, then

lim
n→∞

inf ∥xn − x0∥ < lim
n→∞

inf ∥xn − x∥

for all x ∈ X, x ̸= x0.

Lemma 1. [3] Let X be a reflexive Banach space with the Opial condition. Then X has normal
structure.

Lemma 2. [3] A closed subspace of a reflexive Banach space is reflexive.

Now we state the Kirk’s fixed point theorem.

Theorem 4. [3] Let X be a Banach space and C a nonempty weakly compact, convex subset of X
with normal structure, then every nonexpansive mapping T : C → C has a fixed point.

We state the main theorem of Section 2.

Theorem 5. Let X be a reflexive Banach space satisfying Opial condition. Let f ∈ X and T : X → X
be a nonexpansive mapping. Then the operator equation

x− Tx = f

has a solution x if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X defined by
xn+1 = Txn + f , n ∈ N0 is bounded.

Proof. Let Tf be the mapping from X into X given by

Tf (u) = Tu+ f.

Then u is a solution of
x− Tx = f

if and only if u is a fixed point of Tf . Clearly Tf is nonexpansive. Suppose Tf has a fixed point u ∈ X.
Then for all n ∈ N,

∥xn+1 − u∥ ≤ ∥xn − u∥.

Hence {xn} is bounded.

Conversely, suppose that {xn} is bounded. Let d = diam({xn}) and

Bd[x] = {y ∈ X : ∥x− y∥ ≤ d}

for each x ∈ X. Set Cn =
⋂

i≥nBd[xi]. Then Cn is a nonempty convex set for each n, and

Tf (Cn) ⊂ Cn+1.
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Let C be the closure of the union of Cn for n ∈ N,

C =
⋃
n∈N

Cn.

Since Cn increases with n, C is a closed, convex and bounded subset of X. It is known that [1] bounded,
closed and convex subsets of reflexive Banach spaces are weakly compact, hence we get that C is weakly
compact.

Now since
Tf (C) = Tf (

⋃
Cn) ⊆ Tf (

⋃
Cn) =

⋃
Tf (Cn) ⊆

⋃
Cn+1 = C,

we get that Tf maps C into itself. By Lemma 1.3.6, C is a reflexive Banach space. Now X satisfies
Opial condition and C being a closed subset of X, will also satisfy Opial condition. Hence by Lemma
1.3.5, C has normal structure. Finally, applying Kirk’s fixed point theorem we get that Tf has a fixed
point in C which proves the theorem.

4 Application of Sadovskii Fixed Point Theorem

We recall some definitions

Definition 6. [1] Let (M,ρ) denote a complete metric space and let B denote the collection of
nonempty and bounded subsets of M . Define the Kuratowski measure of noncompactness α : B → R+

by taking for A ∈ B,
α(A)=inf{ϵ > 0 A is contained in the union of a finite number of sets in B each
having diameter less than ϵ}.
If M is a Banach space the function α has the following properties for A,B ∈ B
1. α(A) = 0 ⇔ A is compact,
2. α(A+B) ≤ α(A) + α(B).

Definition 7. [2] Let K be a subset of a metric space M . A mapping T : K → M is said to be
condensing if T is bounded and continuous and if

α(T (D)) < α(D)

for all bounded subsets D of M for which α(D) > 0.

We state the Sadovskii fixed point theorem.

Theorem 6. [2] Let K be a nonempty, bounded closed and convex subset of a Banach space and let
T : K → K be a condensing mapping, then T has a fixed point.

The main result of section 3 is the following:

Theorem 7. Let X be an arbitrary Banach space, let f ∈ X and T : X → X be a condensing mapping,
then the operator equation

x− Tx = f

has a solution if and only if for any x0 ∈ X, the sequence of Picard iterates {xn} in X, defined by
xn+1 = Txn + f , n ∈ N0 is bounded.

Proof. Let the mapping Tf : X → X be defined by

Tf (u) = Tu+ f.

Then u is a solution of the operator equation

x− Tx = f
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if and only if u is a fixed point of Tf .
Since T is bounded and continuous, Tf is also bounded and continuous. Using the properties of the
Kuratowski measure of noncompactness, for all bounded subsets D of X, we have

α(Tf (D)) = α(T (D) + {f}) ≤ α(T (D)) + α({f}).

Since {f} is compact, {f} is compact, implying α({f}) = 0, giving

α(Tf (D)) ≤ α(T (D)) < α(T (D)).

Since T is condensing mapping and it follows that Tf is a condensing mapping.
Suppose Tf has a fixed point u in X. Then for all n ∈ N, since Tf is a continuous mapping being
condensing, we get

∥xn+1 − u∥ = ∥Txn + f − u∥ = ∥Tf (xn)− Tf (u)∥ ≤ ∥xn − u∥.

Hence {xn} is bounded.

Conversely, suppose that {xn} is bounded. Let d = diam({xn}) and for each x ∈ X

Bd[x] = {y ∈ X : ∥x− y∥ ≤ d}.

Set Cn =
⋂

i≥nBd[xi], then Cn is a nonempty convex set for each n. Using that T is a continuous
mapping and the given Picard iteration, we have

y ∈ Bd[xn] ⇒ ∥y − xn∥ ≤ d

⇒ ∥Ty − Txn∥ ≤ d

⇒ ∥Ty − [xn+1 − f ]∥ ≤ d

⇒ ∥(Ty + f)− xn+1∥ ≤ d

⇒ (Ty + f) ∈ Bd[xn+1].

Applying this, we get the following

Tf (Cn) = Tf (
⋂
i≥n

Bd[xi])

⊆
⋂
i≥n

Tf (Bd[xi])

=
⋂
i≥n

{Tf (y) : ∥y − xi∥ ≤ d}

=
⋂
i≥n

{(Ty + f) : ∥y − xi∥ ≤ d}

⊆
⋂

i≥n+1

Bd[xi] = Cn+1.

Let us define
C =

⋃
n∈N

Cn.

Since Cn increases with n,
Cn ⊂ Cn+1 ⊂ Cn+2 ⊂ .......,

it follows that C is a closed, convex and bounded subset of X. Now we have

Tf (C) = Tf

(⋃
n∈N

Cn

)
⊆ Tf

(⋃
n∈N

Cn

)
=

⋃
n∈N

Tf (Cn) ⊆
⋃
n∈N

Cn+1 = C

giving Tf : C → C since Tf is continuous mapping.

Finally, applying the Sadovskii fixed point theorem to Tf and C, we obtain that Tf has a fixed point
in C which proves the theorem.

https://doi.org/10.17993/3ctic.2022.112.72-79
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if and only if u is a fixed point of Tf .
Since T is bounded and continuous, Tf is also bounded and continuous. Using the properties of the
Kuratowski measure of noncompactness, for all bounded subsets D of X, we have

α(Tf (D)) = α(T (D) + {f}) ≤ α(T (D)) + α({f}).

Since {f} is compact, {f} is compact, implying α({f}) = 0, giving

α(Tf (D)) ≤ α(T (D)) < α(T (D)).

Since T is condensing mapping and it follows that Tf is a condensing mapping.
Suppose Tf has a fixed point u in X. Then for all n ∈ N, since Tf is a continuous mapping being
condensing, we get

∥xn+1 − u∥ = ∥Txn + f − u∥ = ∥Tf (xn)− Tf (u)∥ ≤ ∥xn − u∥.

Hence {xn} is bounded.

Conversely, suppose that {xn} is bounded. Let d = diam({xn}) and for each x ∈ X

Bd[x] = {y ∈ X : ∥x− y∥ ≤ d}.

Set Cn =
⋂

i≥nBd[xi], then Cn is a nonempty convex set for each n. Using that T is a continuous
mapping and the given Picard iteration, we have

y ∈ Bd[xn] ⇒ ∥y − xn∥ ≤ d

⇒ ∥Ty − Txn∥ ≤ d

⇒ ∥Ty − [xn+1 − f ]∥ ≤ d

⇒ ∥(Ty + f)− xn+1∥ ≤ d

⇒ (Ty + f) ∈ Bd[xn+1].

Applying this, we get the following

Tf (Cn) = Tf (
⋂
i≥n

Bd[xi])

⊆
⋂
i≥n

Tf (Bd[xi])

=
⋂
i≥n

{Tf (y) : ∥y − xi∥ ≤ d}

=
⋂
i≥n

{(Ty + f) : ∥y − xi∥ ≤ d}

⊆
⋂

i≥n+1

Bd[xi] = Cn+1.

Let us define
C =

⋃
n∈N

Cn.

Since Cn increases with n,
Cn ⊂ Cn+1 ⊂ Cn+2 ⊂ .......,

it follows that C is a closed, convex and bounded subset of X. Now we have

Tf (C) = Tf

(⋃
n∈N

Cn

)
⊆ Tf

(⋃
n∈N

Cn

)
=

⋃
n∈N

Tf (Cn) ⊆
⋃
n∈N

Cn+1 = C

giving Tf : C → C since Tf is continuous mapping.

Finally, applying the Sadovskii fixed point theorem to Tf and C, we obtain that Tf has a fixed point
in C which proves the theorem.
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