study for security purposed we able to detect object and provide suitable alarm messages.as a Future
scope we can used high end camera and test the accuracy and speed.
REFERENCES
[1]
Dalal, N. and Triggs, B. 2005. Histograms of oriented gradients for human detection. Comput. Vision
Pattern Recognit. 1, 886–893.
[2]
DollaÅLr, P., Wojek, C., Schiele, B., and Perona, P. 2011. Pedestrian detection: An evaluation of the
state of the art. IEEE transactions on pattern analysis and machine intelligence 34, 743–61.
[3]
Felzenszwalb, P., Girshick, R., Mcallester, D., and Ramanan, D. 2010. Object detection with
discriminatively trained part-based models. IEEE transactions on pattern análisis and machine
intelligence 32, 1627–45.
[4] Forsyth, D. 2014. Object detection with discriminatively trained part-based models. Computer 47, 6–7.
[5] Girshick, R. 2015. Fast r-cnn.
[6] Girshick, R., Donahue, J., Darrell, T., and Malik, J. 2013. Rich feature hierarchies for accurate object
detection and semantic segmentation. Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition.
[7] He, K., Zhang, X., Ren, S., and Sun, J. 2014. Spatial pyramid pooling in deep convolutional networks
for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 37.
[8]
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., and Berg, A. 2016. Ssd: Single shot
multibox detector. Vol. 9905. 21–37.
[9]
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. 2016. You only look once: Unified, real-time
object detection. 779–788.
[10] Ren, S., He, K., Girshick, R., and Sun, J. 2015. Faster r-cnn: Towards real-time object detection with
region proposal networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 39.
[11]
Sampat, M. and Bovik, A. 2003. Detection of spiculated lesions in mammograms. Annual
International Conference of the IEEE Engineering in Medicine and Biology - Proceedings 1.
[12] Sung, K. and Poggio, T. 1998. Example based learning for view-based human face detection. Pattern
Analysis and Machine Intelligence, IEEE Transactions on 20, 39 – 51.
[13] Viola, P. and Jones, M. 2001. Rapid object detection using a boosted cascade of simple features. IEEE
Conf Comput Vis Pattern Recognit 1, I–511.
[14]
Zhao, Z.-Q., Zheng, P., Xu, S.-T., and Wu, X. 2019. Object detection with deep learning: A review.
IEEE Transactions on Neural Networks and Learning Systems PP, 1–21.
https://doi.org/10.17993/3ctecno.2022.v11n2e42.51-57
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254-4143
Ed. 42 Vol. 11 N.º 2 August - December 2022
57