of energy consumption. These additions will enhance system performance and help the models to be
tuned with high energy efficiency.
REFERENCES
[1] Ahmed, U., Aleem, M., Noman Khalid, Y., Arshad Islam, M., and Azhar Iqbal, M. 2021. RALB-
HC: A resource-aware load balancer for heterogeneous cluster. Concurr. Comput. 33, 14 (July).
[2] Ala’anzy, M. and Othman, M. 2019. Load balancing and server consolidation in cloud computing
environments: A meta-study. IEEE Access 7, 141868–141887.
[3] Alharbi, H. A., El-Gorashi, T. E. H., and Elmirghani, J. M. H. 2019. Energy efficient virtual
machine services placement in cloud-fog architecture. In 2019 21st International Conference on
Transparent Optical Networks (ICTON). IEEE.
[4] Ben Alla, S., Ben Alla, H., Touhafi, A., and Ezzati, A. 2019. An efficient energy-aware tasks
scheduling with deadline-constrained in cloud computing. Computers 8, 2 (June), 46.
[5] Bhuvaneswari, D. and Akila, A. 2019. An energy efficient management in various fog platforms. In
2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing
(COMITCon). IEEE.
[6] Dey, N. S. and Gunasekhar, T. 2019. A comprehensive survey of load balancing strategies using
hadoop queue scheduling and virtual machine migration. IEEE Access 7, 92259– 92284.
[7] Dong, Y., Xu, G., Ding, Y., Meng, X., and Zhao, J. 2019. A ‘joint-me’ task deployment strategy for
load balancing in edge computing. IEEE Access 7, 99658–99669.
[8] Escobar, J. J., Ortega, J., D´ıaz, A. F., Gonza´lez, J., and Damas, M. 2019. Energyaware load
balancing of parallel evolutionary algorithms with heavy fitness functions in heterogeneous
CPU-GPU architectures. Concurr. Comput. 31, 6 (Mar.), e4688.
[9] Gupta, P., Goyal, M. K., and Gupta, N. 2015. Reliability aware load balancing algorithm for
content delivery network. In Advances in Intelligent Systems and Computing. Advances in
intelligent systems and computing. Springer International Publishing, Cham, 427–434.
[10] Hadikhani, P., Eslaminejad, M., Yari, M., and Ashoor Mahani, E. 2020. An energyaware and load
balanced distributed geographic routing algorithm for wireless sensor networks with dynamic
hole. Wirel. netw. 26, 1 (Jan.), 507–519.
[11] Jodayree, M., Abaza, M., and Tan, Q. 2019. A predictive workload balancing algorithm in cloud
services. Procedia Comput. Sci. 159, 902–912.
[12] Junaid, M., Sohail, A., Ahmed, A., Baz, A., Khan, I. A., and Alhakami, H. 2020. A hybrid model
for load balancing in cloud using file type formatting. IEEE Access 8, 118135–118155.
[13] Jyoti, A., Shrimali, M., Tiwari, S., and Singh, H. P. 2020. Cloud computing using load balancing
and service broker policy for IT service: a taxonomy and survey. J. Ambient Intell. Humaniz.
Comput. 11, 11 (Nov.), 4785–4814.
[14] Kansal, N. J. and Chana, I. 2018. An empirical evaluation of energy-aware load balancing
technique for cloud data center. Cluster Comput. 21, 2 (June), 1311–1329.
[15] Kaur, M. and Aron, R. 2020. Equal distribution based load balancing technique for fog-based
cloud computing. In Algorithms for Intelligent Systems. Springer Singapore, Singapore, 189–
198.
[16] Kulshrestha, S. and Patel, S. 2019. A study on energy efficient resource allocation for cloud data
center. In 2019 Twelfth International Conference on Contemporary Computing (IC3). IEEE.
[17] Kumar, J., Singh, A. K., and Mohan, A. 2021. Resource-efficient load-balancing framework for
cloud data center networks. ETRI J. 43, 1 (Feb.), 53–63.
[18] Liang, B., Dong, X.,Wang, Y., and Zhang, X. 2020. A low-power task scheduling algorithm for
heterogeneous cloud computing. J. Supercomput. 76, 9 (Sept.), 7290–7314.
[19] Lin, W., Peng, G., Bian, X., Xu, S., Chang, V., and Li, Y. 2019. Scheduling algorithms for
heterogeneous cloud environment: Main resource load balancing algorithm and time balancing
algorithm. J. Grid Comput. 17, 4 (Dec.), 699–726.
https://doi.org/10.17993/3cemp.2022.110250.232-248
3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376
Ed. 50 Vol. 11 N.º 2 August - December 2022
246