[2] Arveson, W. B. (1969). Subalgebras of C∗-algebras. Acta Math., 123, 141-224.
[3]
Arveson, W. B. (2008). The noncommutative Choquet boundary. J. Amer. Math. Soc., 21, no. 4,
1065-1084.
[4]
Arveson, W. B. (2011). The noncommutative Choquet boundary II; Hyperrigidity. Israel J. Math.,
184, 349-385.
[5]
Berens, H., and Lorentz, G. G. (1975). Geometric theory of Korovkin sets. J. Approximation
Theory, 15, no. 3, 161-189.
[6]
Clouatre, R. (2018). Non-commutative peaking phenomena and a local version of the hyperrigidity
conjecture. Proc. Lond. Math. Soc., 117, no. 2, 221–245.
[7]
Clouatre, R. (2018). Unperforated pairs of operator spaces and hyperrigidity of operator systems.
Canad. J. Math., 70, no. 6, 1236–1260.
[8]
Davidson, K. R., and Kennedy, M. (2015). The Choquet boundary of an operator system.
Duke Math. J., 164, no. 15, 2989-3004.
[9]
Davidson, K. R., and Kennedy, M. (2021). Choquet order and hyperrigidity for function
systems. Adv. Math., 385, Paper No. 107774, 30 pp.
[10]
Fuller, A. H.,Hartz, M., and Lupini, M. (2018). Boundary representations of operator spaces
and compact rectangular matrix convex sets. J. Operator Theory, 79, no. 1, 139-172.
[11]
Hamana, M. (1979). Injective envelopes of operator systems. Publ. Res. Inst. Math. Sci., 15, no.
3, 773–785.
[12]
Kennedy, M., and Shalit, O. M. (2015). Essential normality, essential norms and hyperrigidity.
J. Funct. Anal., 268, no. 10, 2990–3016.
[13]
Kleski, C. (2014). Korovkin-type properties for completely positive maps. Illinois J. Math., 58,
no. 4, 1107–1116.
[14] Korovkin, P. P. (1960). Linear operators and approximation theory. Hindustan, Delhi.
[15]
Lance, E.C. (1995). Hilbert
C∗
-modules. A toolkit for operator algebraists. London Mathematical
Society Lecture Note Series, 210. Cambridge University Press, Cambridge.
[16]
Magajna, B. (2016). C*-convex sets and completely positive maps. Integral Equations Operator
Theory, 85, no. 1, 37–62.
[17]
Magajna, B. (2018). Maps with the unique extension property and
C∗
-extreme points. Complex
Anal. Oper. Theory, 12, no. 8, 1903–1927.
[18] Magajna, B. (2019) Operator systems and C∗-extreme points. Studia Math., 247, no. 1, 45–62.
[19]
Manuilov, V. M., and Troitsky, E. V. (2005). Hilbert
C∗
-modules. Translations of Mathematical
Monographs, 226. AMS, Providence, RI.
[20]
Paschke, W. L. (1973). Inner product modules over
B∗
-algebras. Trans. Amer. Math. Soc., 182,
443–468.
[21]
Namboodiri, M. N. N.,Pramod, S.,Shankar, P., and Vijayarajan, A. K. (2018). Quasi
hyperrigidity and weak peak points for non-commutative operator systems. Proc. Indian Acad. Sci.
Math. Sci. 128, no. 5, Paper No. 66.
[22]
Paulsen, V. (2002). Completely bounded maps and operator algebras. Cambridge Studies in
Advanced Mathematics, Vol. 78, Cambridge University Press, Cambridge.
[23]
Saskin, Y. A. (1967). The Milman-Choquet boundary and the theory of approximations. (Russian)
Funkcional. Anal. i Priložen., 1, no. 2, 95–96.
https://doi.org/10.17993/3cemp.2022.110250.173-184
3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376
Ed. 50 Vol. 11 N.º 2 August - December 2022
184