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ABSTRACT

In this article, we show that concerning the spatial tensor product of W ∗-algebras, the tensor product of
two weak hyperrigid operator systems is weak hyperrigid. We prove this result by demonstrating unital
completely positive maps have unique extension property for operator systems if and only if the tensor
product of two unital completely positive maps has unique extension property for the tensor product
of operator systems. Consequently, we prove as a corollary that the tensor product of two boundary
representations for operator systems is boundary representation for the tensor product of operator
systems. The corollary is an analogue result of Hopenwasser’s [9] in the setting of W ∗-algebras.
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ABSTRACT

In this article, we show that concerning the spatial tensor product of W ∗-algebras, the tensor product of
two weak hyperrigid operator systems is weak hyperrigid. We prove this result by demonstrating unital
completely positive maps have unique extension property for operator systems if and only if the tensor
product of two unital completely positive maps has unique extension property for the tensor product
of operator systems. Consequently, we prove as a corollary that the tensor product of two boundary
representations for operator systems is boundary representation for the tensor product of operator
systems. The corollary is an analogue result of Hopenwasser’s [9] in the setting of W ∗-algebras.
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1 INTRODUCTION

Positive approximation processes play a fundamental role in approximation theory and appear naturally
in many problems. In 1953, Korovkin [11] discovered the most powerful and, at the same time, the
simplest criterion to decide whether a given sequence {ϕn}n∈N of positive linear operators on the
space of complex-valued continuous functions C(X), where X is a compact Hausdorff space is an
approximation process. That is, ϕn(f) → f uniformly on X for every f ∈ C(X). In fact it is sufficient to
verify that ϕn(f) → f uniformly on X only for f ∈ {1, x, x2}. This set is called a Korovkin set. Starting
with this result, during the last thirty years, many mathematicians have extended Korovkin’s theorem
to other function spaces or, more generally, to abstract spaces such as Banach algebras, Banach spaces,
C∗-algebras and so on. At the same time, strong and fruitful connections of this theory have been
revealed with classical approximation theory and other fields such as Choquet boundaries, convexity
theory, uniqueness of extensions of positive linear maps, and so on.

Here, we provide an expository review of the non-commutative analogue of Korovkin’s theorems with
weak operator convergence and norm convergence. The notion of boundary representation of a C∗-algebra
for an operator system introduced by Arveson [2] greatly influenced the theory of noncommutative
approximation theory and other related areas such as Korovkin type properties for completely positive
maps, peaking phenomena for operator systems and noncommutative convexity, etc. Arveson [4]
introduced the notion of hyperrigid set as a noncommutative analogue of classical Korovkin set and
studied the relation between hyperrigid operator systems and boundary representations extensively.

In 1984, Limaye and Namboodiri [13] studied the non-commutative Korovkin sets on B(H) using
weak operator convergence, which they named weak Korovkin sets. Limaye and Namboodiri [13] proved
an exciting result using a famous boundary theorem of Arveson [3] that is as follows: An irreducible
subset of B(H) containing identity and a nonzero compact operator is weak Korovkin in B(H) if and
only if the identity representation of the C∗-algebra generated by the irreducible set has a unique
completely positive linear extension to the C∗-algebra when restricted to the irreducible set. Limaye
and Namboodiri gave many examples to establish these notions and theorems.

Namboodiri, inspired by Arveson’s paper [4] on hyperrigidity, modified [15] the notion of weak
Korovkin set on B(H) to weak hyperrigid set in the context of W ∗-algebras using weak operator
convergence. He generalized the theorem in [13], characterizing the weak Korovkin set without assuming
the presence of compact operators, and explored all nondegenerate representations. The result is as
follows: An operator system is weak hyperrigid in the W ∗-algebra generated by it if and only if every
nondegenerate representation has a unique completely positive linear extension to the W ∗-algebra
when restricted to the operator system. Using this theorem, he established the partial answer to the
non-commutative analogue of Saskin’s theorem [18] relating weak hyperrigidity and Choquet boundary.
Namboodiri gave a brief survey of the developments in the ‘non-commutative Korovkin-type theory’
in [14]. Namboodiri, Pramod, Shankar, and Vijayarajan [16] studied the non-commutative analogue of
Saskin’s theorem using the notions quasi hyperrigidity and weak boundary representations. Shankar
and Vijayarajan [21] proved that the tensor product of two hyperrigid operator systems is hyperrigid in
the spatial tensor product of C∗-algebras. Arunkumar and Vijayarajan [1] studied the tensor products
of quasi hyperrigid operator systems introduced in [16]. Shankar [19] established hyperrigid generators
for certain C∗-algebras.

In this article, we study the weak hyperrigidity of operator systems in W ∗-algebras in the context
of tensor products of W ∗-algebras. It is interesting to investigate whether the tensor product of weak
hyperrigid operator systems is weak hyperrigid. As a result of Hopenwasser [9], the tensor product of
boundary representations of C∗-algebras for operator systems is a boundary representation if one of
the constituent C∗-algebras is a GCR algebra. Since weak hyperrigidity implies that all irreducible
representations are boundary representations for W ∗-algebra, we will be able to deduce Hopenwasser’s
result for W ∗-algebras as a spacial case. We achieve this by establishing first that unique extension
property for unital completely positive maps on operator systems carry over to the tensor product
of those maps defined on the tensor product of operator systems in the spatial tensor product of
W ∗-algebras.

https://doi.org/10.17993/3cemp.2022.110250.164-171

2 PRELIMINARIES

To fix our notation and terminology, we recall the fundamental notions. Let H be a complex Hilbert
space and let B(H) be the bounded linear operators on H. An operator system S in a W ∗-algebra
M is a self-adjoint linear subspace of M containing the identity of M. An operator algebra A in a
W ∗-algebra M is a subalgebra of M containing the identity of M.

Let ϕ be a linear map from a W ∗-algebra M into a W ∗-algebra N , we can define a family of maps
ϕn : Mn(M) → Mn(N ) given by ϕn([aij ]) = [ϕ(aij)]. We say that ϕ is completely bounded (CB) if
||ϕ||CB = supn≥1 ||ϕn|| < ∞. We say that ϕ is completely contractive (CC) if ||ϕ||CB ≤ 1 and that ϕ is
completely isometric if ϕn is isometric for all n ≥ 1. We say that ϕ is completely positive (CP) if ϕn is
positive for all n ≥ 1, and that ϕ is unital completely positive (UCP) if in addition ϕ(1) = 1.

Definition 1. [2] Let S be an operator system in a W ∗-algebra M. A nondegenerate representation
π : M → B(H) has a unique extension property (UEP) for S if π|S has a unique completely positive
extension, namely π itself to M. If π is an irreducible representation, then π is said to be a boundary
representation for S.

Definition 2. [15] A set G of generators of a W ∗-algebra M containing the identity 1M is said to be
weak hyperrigid if for every faithful representation M ⊆ B(H) of M on a separable Hilbert space H
and every net {ϕα}α∈I of contractive completely positive maps from B(H) to itself.

lim
α

ϕα(g) = g weakly ∀ g ∈ G =⇒ lim
α

ϕα(a) = a weakly ∀ a ∈ M.

Theorem 1. [15] For every separable operator system S, that generates a W ∗-algebra M, the following
are equivalent.

(i) S is weak hyperrigid.

(ii) For every nondegenerate representation π : M → B(H), on a separable Hilbert space H and every
net {ϕα}α∈I of contractive completely positive maps from M to B(H).
limα ϕα(s) = π(s) weakly ∀ s ∈ S =⇒ limα ϕα(a) = π(a) weakly ∀ a ∈ M.

(iii) For every nondegenerate representation π : M → B(H) on a separable Hilbert space H, π|S has a
unique extension property.

(iv) For every W ∗-algebra N , every homomorphism θ : M → N such that θ(1M) = 1N and every
contractive completely positive map ϕ : N → N ,
ϕ(x) = x ∀ x ∈ θ(S) =⇒ ϕ(x) = x ∀ x ∈ θ(M).

In this context, mentioning the ‘hyperrigidity conjecture’ posed by Arveson [4] is relevant. The
hyperrigidity conjecture states that if every irreducible representation of a C∗-algebra A is a boundary
representation for a separable operator system S ⊆ A and A = C∗(S), then S is hyperrigid. Arveson [4]
proved the conjecture for C∗-algebras having a countable spectrum, while Kleski [10] established
the conjecture for all type-I C∗-algebras with some additional assumptions. Recently Davidson and
Kennedy [6] proved the conjecture for function systems.

Using the apparent correspondence between representations and modules, one can translate many
aspects of the above notions into Hilbert modules. Muhly and Solel [12] gave an algebraic characterization
of boundary representations in terms of Hilbert modules. Following Muhly and Solel, Shankar and
Vijayarajan [20,22] established a Hilbert module characterization for hyperrigidity (weak hyperrigidity)
of specific operator systems in a C∗-algebra (W ∗-algebras).

We need to consider tensor products of W ∗-algebras in this article. Let A1⊗A2 denote the algebraic
tensor product of A1 and A2. Let A1 ⊗s A2 denote the closure of A1 ⊗ A2 provided with the spatial
norm, which is the minimal C∗-norm on the tensor product of W ∗-algebras. In what follows, we will
consider the spatial norm for the tensor product of W ∗-algebras. We know that if representations π1 is
nondegenerate on A1 and π2 is nondegenerate on A2, then the representation π1 ⊗ π2 is nondegenerate
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α

ϕα(g) = g weakly ∀ g ∈ G =⇒ lim
α

ϕα(a) = a weakly ∀ a ∈ M.

Theorem 1. [15] For every separable operator system S, that generates a W ∗-algebra M, the following
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Using the apparent correspondence between representations and modules, one can translate many
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on A1 ⊗A2. Conversely, from [5, Theorem II.9.2.1] and [17, Proposition 1.22.11] we can see that if π is
a nondegenerate representation of A1 ⊗A2, then there are unique nondegenerate representations π1 of
A1 and π2 of A2 such that π = π1 ⊗ π2.

Tensor products of operator spaces (linear subspaces) of C∗-algebras and operator spaces of tensor
product of C∗-algebras were explored by Hopenwasser earlier in [8], and [9] to study boundary
representations. In [8], it was shown that boundary representations of an operator subspace of a
C∗-algebra A⊗Mn(C) under certain conditions are parameterized by the boundary representations
of an operator subspace of the C∗-algebra A which is given by the operator subspace in A⊗Mn(C).
In [9], it was proved that if one of the C∗-algebras of the tensor product is a GCR algebra, then the
boundary representations of the tensor product of C∗-algebras correspond to products of boundary
representations.

3 MAIN RESULTS

In our main result, we investigate the relationship between the weak hyperrigidity of the tensor product
of two operator systems in the tensor product W ∗-algebra and the weak hyperrigidity of the individual
operator systems in the respective W ∗-algebras. The following result shows that the unique extension
property of completely positive maps on operator systems carries over to the tensor product of those
maps defined on the tensor product of operator systems.

Theorem 2. Let S1 and S2 be operator systems generating W ∗-algebras A1 and A2 respectively. Let
πi : Si → B(Hi), i = 1, 2 be unital completely positive maps. Then π1 and π2 have unique extension
property if and only if the unital completely positive map π1 ⊗ π2 : S1 ⊗ S2 → B(H1 ⊗H2) has unique
extension property for S1 ⊗ S2 ⊆ A1 ⊗s A2.

Proof. Assume that π1 ⊗ π2 has unique extension property, that is π1 ⊗ π2 has unique completely
positive extension π̃1 ⊗s π̃2 : A1 ⊗s A2 → B(H1 ⊗H2) which is a representation of A1 ⊗s A2. We will
show that π1 and π2 have unique extension property. On the contrary, assume that one of the factors,
say π1 does not have unique extension property. This means that there exist at least two extensions
of π1, a completely positive map ϕ1 : A1 → B(H1) and the representation π̃1 : A1 → B(H1) such
that ϕ1 ̸= π̃1 on A1, but ϕ1 = π̃1 = π1 on S1. Using [5, II.9.7], we can see that the tensor product
of two completely positive maps is completely positive. We have ϕ1 ⊗s π̃2 is a completely positive
extension of π1 ⊗ π2 on S1 ⊗ S2, where π̃2 is a unique completely positive extension of π2 on S2. Hence
ϕ1 ⊗s π̃2 ̸= π̃1 ⊗s π̃2 on A1 ⊗s A2. This contradicts our assumption.

Conversely, assume that π1 and π2 have the unique extension property, that is π1 and π2 have unique
completely positive extensions π̃1 : A1 → B(H1) and π̃2 : A2 → B(H2) respectively where π̃1 and π̃2
are representations of A1 and A2 respectively. We will show that π1 ⊗ π2 has the unique extension
property. We have π̃1 ⊗s π̃2 : A1 ⊗s A2 → B(H1 ⊗H2) is a representation and an extension of π1 ⊗ π2
on S1 ⊗ S2. It is enough to show that if ϕ : A1 ⊗s A2 → B(H1 ⊗H2) is a completely positive extension
of π1 ⊗ π2 on S1 ⊗ S2 then ϕ = π̃1 ⊗s π̃2 on A1 ⊗A2.

Let P be any rank one projection in B(H2). The map a → (1⊗P )ϕ(a⊗1)(1⊗P ) is completely positive
on A1, since the map is a composition of three completely positive maps. Let v be a unit vector in the
range of P and let K be the range of 1⊗P . Define U : H1 → K by U(x) = x⊗v, x ∈ H1, U is a unitary
map. Let π̂ = Uπ̃1(a)U

∗, a ∈ A1 and π̂(a) is the restriction to K of π̃1(a)⊗P = (1⊗P )(π̃1(a)⊗1)(1⊗P ).
Since π̂ is unitarily equivalent to π̃1, the representation π̂|S1

has unique extension property. Let ψ(a)
be the restriction to K of (1⊗ P )ϕ(a⊗ 1)(1⊗ P ) which implies that ψ is a completely positive map
that agrees with π̂ on S1, hence on all of A1.

Let x, y ∈ H1 and r ∈ H2. From the above paragraph we have, for any a ∈ A1,
⟨ϕ(a⊗ 1)(x⊗ r), y ⊗ r⟩ = ⟨(π̃1(a)⊗ 1)(x⊗ r), y ⊗ r⟩. (Letting P be the rank one projection on the
subspace spanned by r.) Let D = ϕ(a ⊗ 1) − π̃1 ⊗ 1. Then we have ⟨D(x⊗ r), y ⊗ r⟩ = 0, for all
x, y ∈ H1, r ∈ H2. Using polarization formula

https://doi.org/10.17993/3cemp.2022.110250.164-171

4 ⟨D(x⊗ r), y ⊗ s⟩ = ⟨D(x⊗ (r + s)), y ⊗ (r + s)⟩
− ⟨D(x⊗ (r − s)), y ⊗ (r − s)⟩
+i ⟨D(x⊗ (r + is)), y ⊗ (r + is)⟩
−i ⟨D(x⊗ (r − is)), y ⊗ (r − is)⟩ .

We have ⟨D(x⊗ r), y ⊗ s⟩ = 0, for all x, y ∈ H1 and for all r, s ∈ H2. Consequently, if z1 =
n∑

i=1
xi⊗ri

and z2 =
m∑
i=1

yi ⊗ si, then ⟨Dz1, z2⟩ = 0. Since z1, z2 run through a dense subset of H1 ⊗H2 and D

is bounded, D = 0. Therefore ϕ(a ⊗ 1) = π̃1(a) ⊗ 1, for all a ∈ A1. In the same way we can obtain
ϕ(1⊗b) = 1⊗π̃2(b), for all b ∈ A2. Since ϕ is a completely positive map on A1⊗A2 and ϕ(1⊗b) = 1⊗π̃2(b),
for all b ∈ A2, using a multiplicative domain argument, e.g., see [9, Lemma 2] we have

ϕ(a⊗ b) = ϕ(a⊗ 1)(1⊗ π̃2(b)) = (1⊗ π̃2(b))ϕ(a⊗ 1)

for all a ∈ A1, b ∈ A2. Also ϕ(a⊗ 1) = π̃1(a)⊗ 1, for all a ∈ A1. Hence ϕ = π̃1 ⊗s π̃2 on A1 ⊗s A2.

Corollary 1. Let S1 and S2 be separable operator systems generating W ∗-algebras A1 and A2 respectively.
Assume that either A1 or A2 is a GCR algebra. Then S1 and S2 are weak hyperrigid in A1 and A2

respectively if and only if S1 ⊗ S2 is weak hyperrigid in A1 ⊗s A2.

Proof. Assume that S1 ⊗ S2 is weak hyperrigid in the W ∗-algebra A1 ⊗s A2. By theorem 1, every
unital representation π : A1 ⊗s A2 → B(H1 ⊗H2), π|S1⊗S2

has unique extension property. We have if π
is a unital representation of A1 ⊗s A2, since one of the W ∗-algebras is GCR then by [7, Proposition 2]
there are unique unital representations π1 of A1 and π2 of A2 such that π = π1 ⊗s π2. Using theorem 2,
we can see that π1|S1

and π2|S2
have unique extension property. This implies that S1 and S2 are weak

hyperrigid in A1 and A2 respectively again by theorem 1.

Conversely, assume that S1 is weak hyperrigid in A1 and S2 is weak hyperrigid in A2. By theorem 1,
for every unital representations π1 : A1 → B(H1) and π2 : A2 → B(H2), π1|S1

and π2|S2
have unique

extension property. We have, if π1 and π2 are unital representations of A1 and A2 respectively, then
π1 ⊗s π2 is an unital representation of A1 ⊗s A2. Using theorem 2, we can see that π1 ⊗s π2|S1⊗S2

has
unique extension property. Now, by theorem 1 S1 ⊗ S2 is weak hyperrigid in A1 ⊗s A2.

Let A1⊗mA2 denote the closure of A1⊗A2 provided with maximal C∗-norm. There are C∗-algebras
A1 for which the minimal and the maximal norm on A1 ⊗ A2 coincide for all C∗-algebras A2 and
consequently the C∗-norm on A1 ⊗A2 is unique. Such C∗-algebras are called nuclear. The spatial norm
assumption in the above results is redundant if the C∗-algebras are nuclear. But general C∗-algebras
with the lack of injectivity associated with other C∗-norms, including the maximal one, will require
additional assumptions.

Let A1 and A2 be W ∗-algebras and γ is any C∗-cross norm on A1 ⊗A2. If π1 and π2 are irreducible
representations of A1 and A2 respectively, then π1 ⊗γ π2 is an irreducible representation of A1 ⊗γ A2.
Conversely, every irreducible representation π on A1 ⊗γ A2 need not factor as a product π1 ⊗γ π2
of irreducible representations. If we assume, one of the W ∗-algebra is a GCR algebra, and then
by [7, Proposition 2], every irreducible representation does factor. Since GCR algebras are nuclear,
there is a unique C∗-cross norm on A1 ⊗A2, which we denote by A1 ⊗γ A2.

Using the above facts, the result by Hopenwasser [9] relating boundary representations of tensor
products of C∗-algebras will become a corollary to our theorem 2.

Corollary 2. Let S1 and S2 be unital operator subspaces of generating W ∗-algebras A1 and A2

respectively. Assume that either A1 or A2 is a GCR algebra. Then the representation π1 ⊗γ π2 of
A1 ⊗γ A2 is a boundary representation for S1 ⊗ S2 if and only if the representations π1 of A1 and π2 of
A2 are boundary representations for S1 and S2 respectively.

Now, we will provide some examples which illustrate the results above.
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on A1 ⊗A2. Conversely, from [5, Theorem II.9.2.1] and [17, Proposition 1.22.11] we can see that if π is
a nondegenerate representation of A1 ⊗A2, then there are unique nondegenerate representations π1 of
A1 and π2 of A2 such that π = π1 ⊗ π2.

Tensor products of operator spaces (linear subspaces) of C∗-algebras and operator spaces of tensor
product of C∗-algebras were explored by Hopenwasser earlier in [8], and [9] to study boundary
representations. In [8], it was shown that boundary representations of an operator subspace of a
C∗-algebra A⊗Mn(C) under certain conditions are parameterized by the boundary representations
of an operator subspace of the C∗-algebra A which is given by the operator subspace in A⊗Mn(C).
In [9], it was proved that if one of the C∗-algebras of the tensor product is a GCR algebra, then the
boundary representations of the tensor product of C∗-algebras correspond to products of boundary
representations.

3 MAIN RESULTS

In our main result, we investigate the relationship between the weak hyperrigidity of the tensor product
of two operator systems in the tensor product W ∗-algebra and the weak hyperrigidity of the individual
operator systems in the respective W ∗-algebras. The following result shows that the unique extension
property of completely positive maps on operator systems carries over to the tensor product of those
maps defined on the tensor product of operator systems.

Theorem 2. Let S1 and S2 be operator systems generating W ∗-algebras A1 and A2 respectively. Let
πi : Si → B(Hi), i = 1, 2 be unital completely positive maps. Then π1 and π2 have unique extension
property if and only if the unital completely positive map π1 ⊗ π2 : S1 ⊗ S2 → B(H1 ⊗H2) has unique
extension property for S1 ⊗ S2 ⊆ A1 ⊗s A2.

Proof. Assume that π1 ⊗ π2 has unique extension property, that is π1 ⊗ π2 has unique completely
positive extension π̃1 ⊗s π̃2 : A1 ⊗s A2 → B(H1 ⊗H2) which is a representation of A1 ⊗s A2. We will
show that π1 and π2 have unique extension property. On the contrary, assume that one of the factors,
say π1 does not have unique extension property. This means that there exist at least two extensions
of π1, a completely positive map ϕ1 : A1 → B(H1) and the representation π̃1 : A1 → B(H1) such
that ϕ1 ̸= π̃1 on A1, but ϕ1 = π̃1 = π1 on S1. Using [5, II.9.7], we can see that the tensor product
of two completely positive maps is completely positive. We have ϕ1 ⊗s π̃2 is a completely positive
extension of π1 ⊗ π2 on S1 ⊗ S2, where π̃2 is a unique completely positive extension of π2 on S2. Hence
ϕ1 ⊗s π̃2 ̸= π̃1 ⊗s π̃2 on A1 ⊗s A2. This contradicts our assumption.

Conversely, assume that π1 and π2 have the unique extension property, that is π1 and π2 have unique
completely positive extensions π̃1 : A1 → B(H1) and π̃2 : A2 → B(H2) respectively where π̃1 and π̃2
are representations of A1 and A2 respectively. We will show that π1 ⊗ π2 has the unique extension
property. We have π̃1 ⊗s π̃2 : A1 ⊗s A2 → B(H1 ⊗H2) is a representation and an extension of π1 ⊗ π2
on S1 ⊗ S2. It is enough to show that if ϕ : A1 ⊗s A2 → B(H1 ⊗H2) is a completely positive extension
of π1 ⊗ π2 on S1 ⊗ S2 then ϕ = π̃1 ⊗s π̃2 on A1 ⊗A2.

Let P be any rank one projection in B(H2). The map a → (1⊗P )ϕ(a⊗1)(1⊗P ) is completely positive
on A1, since the map is a composition of three completely positive maps. Let v be a unit vector in the
range of P and let K be the range of 1⊗P . Define U : H1 → K by U(x) = x⊗v, x ∈ H1, U is a unitary
map. Let π̂ = Uπ̃1(a)U

∗, a ∈ A1 and π̂(a) is the restriction to K of π̃1(a)⊗P = (1⊗P )(π̃1(a)⊗1)(1⊗P ).
Since π̂ is unitarily equivalent to π̃1, the representation π̂|S1

has unique extension property. Let ψ(a)
be the restriction to K of (1⊗ P )ϕ(a⊗ 1)(1⊗ P ) which implies that ψ is a completely positive map
that agrees with π̂ on S1, hence on all of A1.

Let x, y ∈ H1 and r ∈ H2. From the above paragraph we have, for any a ∈ A1,
⟨ϕ(a⊗ 1)(x⊗ r), y ⊗ r⟩ = ⟨(π̃1(a)⊗ 1)(x⊗ r), y ⊗ r⟩. (Letting P be the rank one projection on the
subspace spanned by r.) Let D = ϕ(a ⊗ 1) − π̃1 ⊗ 1. Then we have ⟨D(x⊗ r), y ⊗ r⟩ = 0, for all
x, y ∈ H1, r ∈ H2. Using polarization formula
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4 ⟨D(x⊗ r), y ⊗ s⟩ = ⟨D(x⊗ (r + s)), y ⊗ (r + s)⟩
− ⟨D(x⊗ (r − s)), y ⊗ (r − s)⟩
+i ⟨D(x⊗ (r + is)), y ⊗ (r + is)⟩
−i ⟨D(x⊗ (r − is)), y ⊗ (r − is)⟩ .

We have ⟨D(x⊗ r), y ⊗ s⟩ = 0, for all x, y ∈ H1 and for all r, s ∈ H2. Consequently, if z1 =
n∑

i=1
xi⊗ri

and z2 =
m∑
i=1

yi ⊗ si, then ⟨Dz1, z2⟩ = 0. Since z1, z2 run through a dense subset of H1 ⊗H2 and D

is bounded, D = 0. Therefore ϕ(a ⊗ 1) = π̃1(a) ⊗ 1, for all a ∈ A1. In the same way we can obtain
ϕ(1⊗b) = 1⊗π̃2(b), for all b ∈ A2. Since ϕ is a completely positive map on A1⊗A2 and ϕ(1⊗b) = 1⊗π̃2(b),
for all b ∈ A2, using a multiplicative domain argument, e.g., see [9, Lemma 2] we have

ϕ(a⊗ b) = ϕ(a⊗ 1)(1⊗ π̃2(b)) = (1⊗ π̃2(b))ϕ(a⊗ 1)

for all a ∈ A1, b ∈ A2. Also ϕ(a⊗ 1) = π̃1(a)⊗ 1, for all a ∈ A1. Hence ϕ = π̃1 ⊗s π̃2 on A1 ⊗s A2.

Corollary 1. Let S1 and S2 be separable operator systems generating W ∗-algebras A1 and A2 respectively.
Assume that either A1 or A2 is a GCR algebra. Then S1 and S2 are weak hyperrigid in A1 and A2

respectively if and only if S1 ⊗ S2 is weak hyperrigid in A1 ⊗s A2.

Proof. Assume that S1 ⊗ S2 is weak hyperrigid in the W ∗-algebra A1 ⊗s A2. By theorem 1, every
unital representation π : A1 ⊗s A2 → B(H1 ⊗H2), π|S1⊗S2

has unique extension property. We have if π
is a unital representation of A1 ⊗s A2, since one of the W ∗-algebras is GCR then by [7, Proposition 2]
there are unique unital representations π1 of A1 and π2 of A2 such that π = π1 ⊗s π2. Using theorem 2,
we can see that π1|S1

and π2|S2
have unique extension property. This implies that S1 and S2 are weak

hyperrigid in A1 and A2 respectively again by theorem 1.

Conversely, assume that S1 is weak hyperrigid in A1 and S2 is weak hyperrigid in A2. By theorem 1,
for every unital representations π1 : A1 → B(H1) and π2 : A2 → B(H2), π1|S1

and π2|S2
have unique

extension property. We have, if π1 and π2 are unital representations of A1 and A2 respectively, then
π1 ⊗s π2 is an unital representation of A1 ⊗s A2. Using theorem 2, we can see that π1 ⊗s π2|S1⊗S2

has
unique extension property. Now, by theorem 1 S1 ⊗ S2 is weak hyperrigid in A1 ⊗s A2.

Let A1⊗mA2 denote the closure of A1⊗A2 provided with maximal C∗-norm. There are C∗-algebras
A1 for which the minimal and the maximal norm on A1 ⊗ A2 coincide for all C∗-algebras A2 and
consequently the C∗-norm on A1 ⊗A2 is unique. Such C∗-algebras are called nuclear. The spatial norm
assumption in the above results is redundant if the C∗-algebras are nuclear. But general C∗-algebras
with the lack of injectivity associated with other C∗-norms, including the maximal one, will require
additional assumptions.

Let A1 and A2 be W ∗-algebras and γ is any C∗-cross norm on A1 ⊗A2. If π1 and π2 are irreducible
representations of A1 and A2 respectively, then π1 ⊗γ π2 is an irreducible representation of A1 ⊗γ A2.
Conversely, every irreducible representation π on A1 ⊗γ A2 need not factor as a product π1 ⊗γ π2
of irreducible representations. If we assume, one of the W ∗-algebra is a GCR algebra, and then
by [7, Proposition 2], every irreducible representation does factor. Since GCR algebras are nuclear,
there is a unique C∗-cross norm on A1 ⊗A2, which we denote by A1 ⊗γ A2.

Using the above facts, the result by Hopenwasser [9] relating boundary representations of tensor
products of C∗-algebras will become a corollary to our theorem 2.

Corollary 2. Let S1 and S2 be unital operator subspaces of generating W ∗-algebras A1 and A2

respectively. Assume that either A1 or A2 is a GCR algebra. Then the representation π1 ⊗γ π2 of
A1 ⊗γ A2 is a boundary representation for S1 ⊗ S2 if and only if the representations π1 of A1 and π2 of
A2 are boundary representations for S1 and S2 respectively.

Now, we will provide some examples which illustrate the results above.
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Example 1. Let G = linear span(I, S, S∗), where S is the unilateral right shift in B(H) and I
is the identity operator. Let A = C∗(G) be the C∗-algebra generated by G. We have K(H) ⊆ A,
A/K(H) ∼= C(T) is commutative, where T denotes the unit circle in C. Let Id denotes the identity
representation of the C∗-algebra A. Let S∗Id(·)S be a completely positive map on the C∗-algebra A such
that S∗IdS|G = Id|G, it is easy to see that S∗IdS|A ̸= Id|A. Therefore the unital representation Id|G
does not have unique extension property. Using [15, Theorem 3.1], we conclude that G is not a weak
hyperrigid operator system in a W ∗-algebra B(H).

Let G1 = G, A1 = A and Id1 denotes the identity representation of A1. Let G2 = A2 = Mn(C) and
Id2 denotes the identity representation of the C∗-algebra A2. The completely positive map S∗Id1S⊗ Id2
on the C∗-algebra A1 ⊗ A2 is such that S∗Id1S ⊗ Id2 = Id1 ⊗ Id2 on operator system G1 ⊗ G2. By
the above conclusion we see that S∗Id1S ⊗ Id2 ̸= Id1 ⊗ Id2 on the C∗-algebra A1 ⊗ A2. Therefore
the unital representation Id1 ⊗ Id2 does not have unique extension property for G1 ⊗ G2. Hence
by theorem [15, Theorem 3.1], G1 ⊗ G2 is not a weak hyperrigid operator system in a W ∗-algebra
B(H)⊗Mn(C).

Example 2. Let the Volterra integration operator V acting on the Hilbert space H = L2[0, 1] be given
by

V f(x) =

∫ x

0
f(t)dt, f ∈ L2[0, 1].

V generates the C∗-algebra K = K(H) of all compact operators. Let S = linear span(V, V ∗, V 2, V 2∗)
and S is weak hyperrigid [4, Theorem 1.7] and [15, Theorem 3.1] in W ∗-algebra B(H). Let S1 = S2 = S
and A1 = A2 = B(H). We know that S1 and S2 are weak hyperrigid operator systems in the W ∗-algebra
A1 and A2 respectively. By corollary 1 we conclude that S1 ⊗ S2 is weak hyperrigid operator system in
the W ∗-algebra A1 ⊗A2.

Example 3. Let G = linear span(I, S, S∗, SS∗), where S is the unilateral right shift in B(H) and I
is the identity operator. Let A = C∗(G) be the C∗-algebra generated by the operator system G. We
have, K(H) ⊆ A. A/K(H) ∼= C(T) is commutative, where T denotes the unit circle in C. Since S is
an isometry, G is a weak hyperrigid operator system in the W ∗-algebra B(H) [15, Theorem 3.1]. Let
G1 = G, A1 = B(H) and G2 = A2 = Mn(C). It is clear that G2 is a weak hyperrigid operator system
in the W ∗-algebra A2 = Mn(C). By corollary 1, G⊗Mn(C) is a weak hyperrigid operator system in
B(H)⊗Mn(C).
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Example 1. Let G = linear span(I, S, S∗), where S is the unilateral right shift in B(H) and I
is the identity operator. Let A = C∗(G) be the C∗-algebra generated by G. We have K(H) ⊆ A,
A/K(H) ∼= C(T) is commutative, where T denotes the unit circle in C. Let Id denotes the identity
representation of the C∗-algebra A. Let S∗Id(·)S be a completely positive map on the C∗-algebra A such
that S∗IdS|G = Id|G, it is easy to see that S∗IdS|A ≠ Id|A. Therefore the unital representation Id|G
does not have unique extension property. Using [15, Theorem 3.1], we conclude that G is not a weak
hyperrigid operator system in a W ∗-algebra B(H).

Let G1 = G, A1 = A and Id1 denotes the identity representation of A1. Let G2 = A2 = Mn(C) and
Id2 denotes the identity representation of the C∗-algebra A2. The completely positive map S∗Id1S⊗ Id2
on the C∗-algebra A1 ⊗ A2 is such that S∗Id1S ⊗ Id2 = Id1 ⊗ Id2 on operator system G1 ⊗ G2. By
the above conclusion we see that S∗Id1S ⊗ Id2 ̸= Id1 ⊗ Id2 on the C∗-algebra A1 ⊗ A2. Therefore
the unital representation Id1 ⊗ Id2 does not have unique extension property for G1 ⊗ G2. Hence
by theorem [15, Theorem 3.1], G1 ⊗ G2 is not a weak hyperrigid operator system in a W ∗-algebra
B(H)⊗Mn(C).

Example 2. Let the Volterra integration operator V acting on the Hilbert space H = L2[0, 1] be given
by

V f(x) =

∫ x

0
f(t)dt, f ∈ L2[0, 1].

V generates the C∗-algebra K = K(H) of all compact operators. Let S = linear span(V, V ∗, V 2, V 2∗)
and S is weak hyperrigid [4, Theorem 1.7] and [15, Theorem 3.1] in W ∗-algebra B(H). Let S1 = S2 = S
and A1 = A2 = B(H). We know that S1 and S2 are weak hyperrigid operator systems in the W ∗-algebra
A1 and A2 respectively. By corollary 1 we conclude that S1 ⊗ S2 is weak hyperrigid operator system in
the W ∗-algebra A1 ⊗A2.

Example 3. Let G = linear span(I, S, S∗, SS∗), where S is the unilateral right shift in B(H) and I
is the identity operator. Let A = C∗(G) be the C∗-algebra generated by the operator system G. We
have, K(H) ⊆ A. A/K(H) ∼= C(T) is commutative, where T denotes the unit circle in C. Since S is
an isometry, G is a weak hyperrigid operator system in the W ∗-algebra B(H) [15, Theorem 3.1]. Let
G1 = G, A1 = B(H) and G2 = A2 = Mn(C). It is clear that G2 is a weak hyperrigid operator system
in the W ∗-algebra A2 = Mn(C). By corollary 1, G⊗Mn(C) is a weak hyperrigid operator system in
B(H)⊗Mn(C).
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