181
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
VARIABLE ON-TIME CONTROL SCHEME TO ACHIEVE
HIGH EFFICIENCY FOR AC/DC BORDER LINE CURRENT
MODE BUCK CONVERTER
Abdul Hakeem Memon
IICT, Mehran UET, Jamshoro, Sindh, (Pakistan).
E-mail: hakeem.memon@faculty.muet.edu.pk
ORCID: https://orcid.org/0000-0001-8545-3823
Asif Zahoor Shaikh
IICT, Mehran UET, Jamshoro, Sindh, (Pakistan).
E-mail: asifzahoorshaikh@gmail.com
ORCID: https://orcid.org/0000-0003-2999-6772
Zubair Ahmed Memon
IICT, Mehran UET, Jamshoro, Sindh, (Pakistan).
E-mail: zubair.memon@faculty.muet.edu.pk
ORCID: https://orcid.org/0000-0001-5967-3152
Anwar Ahmed Memon
IICT, Mehran UET, Jamshoro, Sindh, (Pakistan).
E-mail: anwar.memon@faculty.muet.edu.pk
ORCID: https://orcid.org/0000-0001-6600-204X
Recepción: 15/09/2021 Aceptación: 12/11/2021 Publicación: 14/02/2022
Citación sugerida:
Memon, A. H., Shaikh, A. Z., Memon, Z. A., y Memon, A. A. (2022). Variable on-time control
scheme to achieve high eciency for AC/DC border line current mode buck converter. 3C
Tecnología. Glosas de innovación aplicadas a la pyme, Edición Especial, (febrero 2022), 181-195. https://doi.
org/10.17993/3ctecno.2022.specialissue9.181-195
182 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
ABSTRACT
The Buck power factor improvement converter (BPFIC) is much better topology because of
having advantages like less inrush current, less voltage gain ratio, gives less voltage output
ripple and steps down the voltage even with high input voltage, protection from short circuit
and its single active switch operation makes it attractive. However borderline current mode
(BCM) operated with xed on-time control technique (FOCT) results in its low eciency.
The main reason of low eciency is due to high conduction and switching losses which
occur due to high peak and rms inductor current. In this paper, varying on-time control
technique (VOCT) has been implemented that reduces the peak value of current which
results in improved eciency. In the proposed research, work is related to BPFIC operating
in BCM because BCM has many advantages like no reverse recovery of diode, and zero
current turning o the switch. To verify the eectiveness of proposed control technique,
comparative analysis is obtained between both the two control techniques using SABER
SIMULATOR. It is found that VOCT improves the converter’s eciency compared to
FOCT.
KEYWORDS
Buck Power Factor Improvement Converter (BPFIC), Borderline Current Mode (BCM),
Fixed On-Time Control Technique (FOCT), Varying On-Time Control Technique
(VOCT), Saber Simulation.
183 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
1. INTRODUCTION
The increasing need of electronic devices (requires AC to DC conversion) have resulted
in harmonic content produced by non-linear elements (diodes and thyristors) of electronic
devices connected to AC supply system should be in such limit that it meets regulatory
standard. This requirement is fullled by using active power factor improvement (PFI) circuits
that shape the input phase current to be sinusoidal in nature and in phase with input phase
voltages. The combined eect of non-linear loads results in problem of serious harmonic
distortion in electrical distribution system and its result is poor Power Factor (PF) and power
quality, voltage distortion and low eciency (Azazi et al., 2010). PFI can be categorized into
active and passive types. Compared with a Passive Power Factor Improvement Converters
(PFIC), an active PFIC can achieve a high PF (Nagaraju & Krishnaveni, 2017). The PFIC
are being widely used in ac–dc power conversions to get power factor near to unity and to
reduce harmonic distortion so as to meet the standards like IEC61000-3-2 and IEEE 519
(Yao et al., 2011).
Amongst PFIC, buck Power Factor Improvement Converter (BPFIC) is much better
topology because of having advantages like less inrush current, less voltage gain ratio,
gives less voltage output ripple and steps down the voltage even with high input voltage,
protection from short circuit and its single active switch operation makes it attractive.
However, because of dead zone in the input current of (BPFIC) has resulted in poor PF
and other power quality issues
For enhancing the performance of BPFIC, dierent authors have proposed several control
techniques (Endo, Yamashita, & Sugiura, 1992; Memon et al., 2021).
In this paper, Variable On-Time Technique (VOCT) is implemented to reduce the
conduction and switching losses occurred in borderline current mode BPFIC caused by
peak and rms value of inductor current.
This paper is divided into six sections. First section gives detailed analysis of traditional
BPFIC. In, second section VOCT is implemented to improve converter’s eciency. Third
section represents loss analysis caused by conduction and switching losses. Fourth section
184 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
shows simulation verication to conrm the eectiveness of proposed control technique. In
last section conclusion is discussed.
2. METHODOLOGY
The research methodology is based on:
1. Mathematical analysis of the operating principle of the control schemes for
Borderline Current Mode (BCM) Buck Power Factor Improvement Converter
(BPFIC) for FOCT with the help of MATHCAD converter.
2. Introducing the Varying On-Time Control Technique (VOCT) to obtain high
eciency.
3. Comparative analysis of the converter for FOCT and VOCT strategy.
4. Developing the simulation model of BCM Buck converter with the help of SABER
software.
5. Conrming the results.
2.1. WORKING ANALYSIS OF TRADITIONALLY USED BCM BPFIC
Figure 1 shows the circuit of Buck Power Factor Improvement Converter (BPFIC) that
can be operated in borderline current mode (BCM). The working of the BPFIC will be
analyzed in detail with the help of equations in order to nd out the expression of xed
on-time technique (FOCT).
Figure 1. Circuit Diagram of BPFIC.
Source: (Memon et al., 2021).
185 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
The instantaneous value of source voltage at the input and output of bridge is expressed as
(1)
BPFIC operated with BCM has two switching cycles.
The inductor is charged from supply voltage when the buck switch is ON, as indicated in
Figure 2 (First switching cycle).
Figure 2. BPFIC when switch is on.
Source: (Memon et al., 2018).
The maximum current owing through inductor for BPFIC with FOCT is
(2)
The inductor is discharged through load when the buck switch is OFF, as showed in Figure
3 and the expression is given in (3) (Second switching cycle).
Figure 3. BPFIC when switch is off.
Source: own elaboration.
186 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
(3)
The maximum current for charging and discharging is same as per energy conservation.
So, following relation is got
(4)
Similarly
(5)
By substituting (3) into (5) yields
(6)
The average input current for BPFIC with FOCT is calculated as
(7)
From (1) and (7), the input power of the BPFIC with FOCT is given
(8)
The value of ton_foct is expressed after supposing 100% eciency as
(9)
2.2. PROPOSED VOCT FOR BPFIC FOR ENHANCING EFFICIENCY
For improving the eciency for the BPFIC, the on-time of buck CMOS in (9) has to change
as
(10)
187 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
where Mon is a constant
Replacing (10) into (7), the input current of the BPFIC is
(11)
The input power for BPFIC with VOCT is got as
(12)
Rearranging (12), we get
(13)
2.3. EFFICIENCY COMPARISON
2.3.1. POWER LOSS DUE TO BRIDGE RECTIFIER
The power loss due to bridge rectier in BPFIC with FOCT and VOCT is estimated as
(14(a))
(14(b))
The value of VFD for GBU 406 is 0.89.
2.3.2. CONDUCTED LOSSES BY CMOS (SWITCH)
The rms current owing through switch, when it is on is given as
(15)
The rms current of the o time period can be determined as
(16)
188 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
The rms current due to switch on and o is calculated as
(17(a))
(17(b))
The losses due to conduction of switches can be got as
(18(a))
(18(b))
The resistance from drain to source is 0.188, which is from data sheet of 8N60.
2.3.3. SWITCH OFF LOSSES BY CMOS (SWITCH)
When the switch is o, the loss of BPFC with FOCT and VOCT is expressed as
(19(a))
(19(b))
Tf for 8N60 is 12ns.
2.3.4. COPPER LOSS OF THE BPFICS INDUCTOR
The inductor’s copper loss of BPFIC with FOCT and VOCT is given as
(20(a))
(20(b))
2.3.5. CORE LOSS OF BPFICS THE INDUCTOR
The inductor’s core loss of BPFIC with FOCT and VOCT is given as
(21(a))
189 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
(21(b))
(21(c))
(21(d))
The value of core parameters can be found from Memon et al. (2018).
2.3.6. CONDUCTED LOSS BY FREEWHEELING DIODE
The conducted losses by freewheeling diode of BPFIC with FOCT and VOCT is got as
(22(a))
(22(b))
The forward voltage drop is 0.669 for MUR 860.
2.3.7. THE EFFICIENCY COMPARISON
The eciency of BCM BPFIC with FOCT and VOCT can be estimated as
(23(a))
(23(b))
190 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
The calculated eciency of BCM BPFIC with FOCT and VOCT from (14-23) and
specication is depicted in Figure 4. It can be observed the eciency of BPFIC with VOCT
is more than FOCT.
Figure 4. Efciency at universal input voltage (Mathcad Graph from Eq. (14-23)).
Source: own elaboration.
3. SIMULATION RESULTS
In order to verify the eectiveness of VDCT, simulation verication is obtained using
MATLAB. The input voltage range is 90-264VAC, and the output is 80V. For ensuring the
current to be in CRM, L6561 IC is used. All the components in the circuit are selected as
idea.
In Figure 5, the peak of input current obtained in case of FOCT is more. The current
having more peak results in losses that degrades converter’s eciency whereas in Figure 6,
the peak of input current obtained in case of VOCT is less which reduces conduction and
switching losses hence converter’s performance is improved.
Figure 5. vin, and iin with FOCT (Simulation waveform).
Source: own elaboration.
191 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
Figure 6. vin, and iin with VOCT (Simulation waveform).
Source: own elaboration.
4. CONCLUSIONS
The Buck Power Factor Improvement Converter (BPFIC) is much better topology because
of having many advantages. However Borderline Current Mode (BCM) operated with
Fixed On-Time Technique (FOCT) results in its low eciency. The main reason of low
eciency is due to high conduction and switching losses which occur due to high peak
and rms inductor current. In this paper, Varying On-Time Technique (VOCT) has been
implemented that reduces the peak value of current which results in improved eciency.
REFERENCES
Azazi, H. Z., El-Kholy, E. E., Mahmoud, S. A., & Shokralla, S. S. (2010). Review
of passive and active circuits for power factor correction in single phase, low
power AC-DC converters. In Proceedings of the 14th International Middle East Power
Systems Conference (MEPCON’10) (p. 217). http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.1054.59&rep=rep1&type=pdf
Endo, H., Yamashita, T., & Sugiura, T. (1992). A high-power-factor buck converter.
In PESC’92 Record. 23rd Annual IEEE Power Electronics Specialists Conference (pp. 1071-
1076). IEEE. https://www.semanticscholar.org/paper/A-high-power-factor-buck-
converter-Endo-Yamashita/d2e981fa9b793d855da6f572abac2470ab06248b
Erickson, R. W., & Maksimovic, D. (2007). Fundamentals of power electronics. Springer
Science & Business Media.
192 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
Huber, L., Gang, L., & Jovanovic, M. M. (2009). Design-oriented analysis and
performance evaluation of buck PFC front end. IEEE Transactions on power electronics,
25(1), 85-94. https://doi.org/10.1109/TPEL.2009.2024667
Jang, Y., & Jovanović, M. M. (2010). Bridgeless high-power-factor buck converter.
IEEE Transactions on Power Electronics, 26(2), 602-611. https://doi.org/10.1109/
TPEL.2010.2068060
Ki, S. K., & Lu, D. D. C. (2012). A high step-down transformerless single-stage single-
switch AC/DC converter. IEEE Transactions on Power Electronics, 28(1), 36-45. https://
doi.org/10.1109/TPEL.2012.2195505
Lamar, D. G., Fernandez, M., Arias, M., Hernando, M. M., & Sebastian, J. (2012).
Tapped-inductor buck HB-LED AC–DC driver operating in boundary conduction
mode for replacing incandescent bulb lamps. IEEE Transactions on Power Electronics,
27(10), 4329-4337. https://doi.org/10.1109/TPEL.2012.2190756
Lee, Y. S., Wang, S. J., & Hui, S. Y. R. (1997). Modeling, analysis, and application of
buck converters in discontinuous-input-voltage mode operation. IEEE Transactions on
Power Electronics, 12(2), 350-360. https://doi.org/10.1109/63.558762
Liu, X., Wan, Y., He, M., Zhou, Q., & Meng, X. (2020). Buck-Type Single-Switch
Integrated PFC Converter With Low Total Harmonic Distortion. IEEE Transactions
on Industrial Electronics, 68(8). https://doi.org/10.1109/TIE.2020.3007121
Memon, A. (2020a). DCM Boost Converter with High Eciency. Journal Of Mechanics
Of Continua And Mathematical Sciences, spl6. https://doi.org/10.26782/jmcms.
spl.6/2020.01.00006
Memon, A. (2020b). Realization Of Unity Power Factor For Ac/Dc Boundary Conduction
Mode Flyback Converter With Any Specic Turn’s Ratio. Journal Of Mechanics
Of Continua And Mathematical Sciences, spl6. https://doi.org/10.26782/jmcms.
spl.6/2020.01.00014
193 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
Memon, A. H., & Yao, K. (2018). UPC strategy and implementation for buck–buck/
boost PF correction converter. IET Power Electronics, 11(5), 884-894. https://doi.
org/10.1049/iet-pel.2016.0919
Memon, A. H., Ali, R., & Memon, Z. A (2021a). Discontinuous Conduction Mode
Buck Converter with High Eciency. 3C Tecnología. Glosas de innovación aplicadas a
la pyme. Edición Especial, May 2021, 31-47. https://doi.org/10.17993/3ctecno.2021.
specialissue7.31-47
Memon, A. H., Baloach, M. H., Sahito, A. A., Soomro, A. M., & Memon, Z. A.
(2018). Achieving High Input PF for CRM Buck-Buck/Boost PFC Converter. IEEE
Access, 6, 79082-79093. https://doi.org/10.1109/ACCESS.2018.2879804
Memon, A. H., Memon N, & Memon, Z. A (2021b). Modied Variable On-Time
Control Scheme To Realize High Power Factor For AC/DC Integrated Buck-Boost
Converter. 3C Tecnología. Glosas de innovación aplicadas a la pyme. Edición Especial,
May 2021, 61-75. https://doi.org/10.17993/3ctecno.2021.specialissue7.61-75
Memon, A. H., Memon N, Memon, Z. A & Hashmani A. A (2021c). CRM Buck
Converter with High Input Power Factor. 3C Tecnología. Glosas de innovación aplicadas a la
pyme. Edición Especial, May 2021, 143-155. https://doi.org/10.17993/3ctecno.2021.
specialissue7.143-155
Memon, A. H., Memon, Z. A., Shaikh, N. N., Sahito, A. A., & Hashmani, A. A.
(2019a). Boundary conduction mode modied buck converter with low input current
total harmonic distortion. Indian Journal of Science and Technology, 12, 17. https://doi.
org/10.17485/ijst/2019/v12i17/144613
Memon, A. H., Noonari, F. M., Memon, Z. A., Farooque, A., y Uqaili, M. A. (2020).
AC/DC Critical Conduction Mode Buck-Boost Converter with Unity Power Factor.
3C Tecnología. Glosas de innovación aplicadas a la pyme. Edición Especial, Abril 2020, 93-105.
http://doi.org/10.17993/3ctecno.2020
Memon, A. H., Shaikh, N. N., Kumar, M., & Memon, Z. A. (2019b). Buck-buck/boost
converter with high input power factor and non-oating output voltage. International
194 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
Journal of Computer Science and Network Security, 19(4), 299-304. http://paper.ijcsns.
org/07_book/201904/20190442.pdf
Memon, A. H., Yao, K., Chen, Q., Guo, J., & Hu, W. (2016). Variable-on-time control to
achieve high input power factor for a CRM-integrated buck–yback PFC converter.
IEEE Transactions on Power Electronics, 32(7), 5312-5322. https://doi.org/10.1109/
TPEL.2016.2608839
Memon, A.H., Memon, M.A., Memon, Z.A. & Hashmani, A.A. (2019c). Critical
Conduction Mode Buck-Buck/Boost Converter with High Eciency. 3C Tecnología.
Glosas de innovación aplicadas a la pyme. Speciaal Issue, November 2019, 201-219. http://
dx.doi.org/10.17993/3ctecno.2019.specialissue3.201-219
Memon, A.H., Nizamani, M.O., Memon, A.A., Memon, Z.A. & Soomro, A.M.
(2019d). Achieving high input power factor for DCM Buck PFC converter by
variable Duty-Cycle Control. 3C Tecnología. Glosas de innovación aplicadas a la pyme.
Speciaal Issue, November 2019, 185-199. http://dx.doi.org/10.17993/3ctecno.2019.
specialissue3.185-199
Memon, A.H., Pathan, A.A., Kumar, M. and Sahito, A., A J., & Memon, Z.A
(2019e). Integrated buck-yback converter with simple structure and unity power
factor. Indian Journal of Science and Technology, 12, 17. https://doi.org/10.17485/
ijst/2019/v12i17/144612
Nagaraju, A., & Krishnaveni, A. (2017). PSIM Simulation of Variable Duty Cycle
Control DCM Boost PFC Converter To Achieve High Input Power Factor. International
Research Journal of Engineering and Technology (IRJET), 4(3), 882-888. https://www.irjet.
net/archives/V4/i3/IRJET-V4I3224.pdf
Nussbaumer, T., Raggl, K., & Kolar, J. W. (2009). Design guidelines for interleaved
single-phase boost PFC circuits. IEEE Transactions on Industrial Electronics, 56(7), 2559-
2573. https://doi.org/10.1109/TIE.2009.2020073
Praneeth, A. V. J. S., & Williamson, S. S. (2018). A review of front end ac-dc topologies
in universal battery charger for electric transportation. In 2018 IEEE Transportation
195 https://doi.org/10.17993/3ctecno.2022.specialissue9.181-195
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
Electrication Conference and Expo (ITEC) (pp. 293-298). IEEE. https://doi.org/10.1109/
ITEC.2018.8450186
Spiazzi, G., & Buso, S. (2000). Power factor preregulators based on combined buck-
yback topologies. IEEE transactions on Power Electronics, 15(2), 197-204. https://doi.
org/10.1109/63.838091
Williamson, S. S., Rathore, A. K., & Musavi, F. (2015). Industrial electronics for electric
transportation: Current state-of-the-art and future challenges. IEEE Transactions on
Industrial Electronics, 62(5), 3021-3032. https://doi.org/10.1109/TIE.2015.2409052
Yao, K., Ruan, X., Mao, X., & Ye, Z. (2011). Variable-Duty-Cycle Control to Achieve
High Input Power Factor for DCM Boost PFC Converter. IEEE Transactions On
Industrial Electronics, 58(5), 1856-1865. https://doi.org/10.1109/TIE.2010.2052538
Yao, K., Zhou, X., Yang, F., Yang, S., Cao, C., & Mao, C. (2017). Optimum third
current harmonic during nondead zone and its control implementation to improve
PF for DCM buck PFC converter. IEEE Transactions on Power Electronics, 32(12), 9238-
9248. https://doi.org/10.1109/TPEL.2017.2657883