92 https://doi.org/10.17993/3ctecno.2022.specialissue9.65-95
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Febrero 2022
manure for H2 production. Energy Conversion and Management, 173, 15–28. https://
doi.org/10.1016/J.ENCONMAN.2018.07.061
Teo, E. Y. L., Muniandy, L., Ng, E. P., Adam, F., Mohamed, A. R., Jose, R., &
Chong, K. F. (2016). High surface area activated carbon from rice husk as a high
performance supercapacitor electrode. Electrochimica Acta, 192, 110–119. https://doi.
org/10.1016/J.ELECTACTA.2016.01.140
Wahid, M., Puthusseri, D., Phase, D., & Ogale, S. (2014). Enhanced capacitance
retention in a supercapacitor made of carbon from sugarcane bagasse by hydrothermal
pretreatment. Energy Fuels, 28, 4233–4240. https://doi.org/10.1021/ef500342d
Wang, H., & Yoshio, M. (2006). Graphite, a suitable positive electrode material for high-
energy electrochemical capacitors. Electrochemistry Communications, 8(9), 1481–1486.
https://doi.org/10.1016/J.ELECOM.2006.07.016
Wang, H., Yoshio, M., Thapa, A. K., & Nakamura, H. (2007). From symmetric AC/AC
to asymmetric AC/graphite, a progress in electrochemical capacitors. Journal of Power
Sources, 169(2), 375–380. https://doi.org/10.1016/J.JPOWSOUR.2007.02.088
Wang, R., Wang, P., Yan, X., Lang, J., Peng, C., & Xue, Q. (2012). Promising Porous
Carbon Derived from Celtuce Leaves with Outstanding Supercapacitance and CO2 Capture
Performance. 4, 5800–5806. https://doi.org/10.1021/am302077c
Werkstetter, S. (2015). Ultracapacitor Usage in Wind Turbine Pitch Control Systems | AltEnergyMag.
Altenergymag.com. https://www.altenergymag.com/article/2015/06/ultracapacitor-
usage-in-wind-turbine-pitch-control-systems/20392
Xu, B., Chen, Y., Wei, G., Cao, G., Zhang, H., & Yang, Y. (2010). Activated
carbon with high capacitance prepared by NaOH activation for supercapacitors.
Materials Chemistry and Physics, 124(1), 504–509. https://doi.org/10.1016/J.
MATCHEMPHYS.2010.07.002
Xu, G., Han, J., Ding, B., Nie, P., Pan, J., Dou, H., Li, H., & Zhang, X. (2015).
Biomass-derived porous carbon materials with sulfur and nitrogen dual-doping for
energy storage. Green Chemistry, 17, 1668–1674.