83
https://doi.org/10.17993/3ctecno.2021.specialissue8.71-85
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue
Noviembre 2021
Goyal, K., Agarwal, K., & Kumar, R. (2017). Face detection and tracking: Using
OpenCV. In International conference of Electronics, Communication and Aerospace Technology
(ICECA). https://doi.org/10.1109/ICECA.2017.8203730
Kazem, V., & Sullivan, J. (2014). One-millisecond face alignment with an ensemble
of regression trees. In IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 1867–1874.
Leo, P., & Sankar, D. (2015). Detection of drowsiness based on HOG features and SVM
classiers. Proceedings of the 2015 IEEE International Conference on Research in Computational
Intelligence and Communication Networks (ICRCICN). https://doi.org/10.1109/
ICRCICN.2015.7434232
Mingxing, J., Hengyuan, X., & Fei, W. (2012). Research on Driver’s Face Detection
and Position Method Based on Image Processing. In 24th Chinese Control and Decision
Conference (CCDC), 196–202. https://doi.org/10.1109/CCDC.2012.6244315
Owayjan1, M., Achkar, R., & Iskandar, M. (2016). Face Detection with Expression
Recognition using Articial Neural Networks. In 3rd Middle East Conference on Biomedical
Engineering (MECBME). https://doi.org/10.1109/MECBME.2016.7745421
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., brucher, M., Perrot, M., & Duchesnay, É. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research, 12, 2826-
2830. https://www.jmlr.org/papers/volume12/pedregosa11a/pedregosa11a.pdf
Salehian, S., & Far, B. (2007). Embedded Real-Time Blink Detection System for Driver
Fatigue Monitoring. In 27th International Conference on Software Engineering and Knowledge
Engineering. https://doi.org/10.18293/SEKE2015-249
Wazwaz, A. A., Herbawi, A. O., Teeti, M. J., & Hmeed, S. Y. (2018). Raspberry Pi
and Computers-Based Face Detection and Recognition System. In 4th International
Conference on Computer and Technology Applications (ICCTA), 171–174. https://doi.
org/10.1109/CATA.2018.8398677