593
https://doi.org/10.17993/3ctecno.2021.specialissue8.579-595
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue
Noviembre 2021
shown a terric live performance in class. DWT presents an awesome nearby portrayal of
the wavering added substances of the non-stationary or nonlinear sign. This system gives
preferable sort exactness over a couple of methodologies contemplated beforehand.
ACKNOWLEDGEMENT
This work was supported by the department of Electronics and Instrumentation department
of Kalasalingam Academy of Research and Education.
REFERENCES
Bajaj, V., & Pachori, R. B. (2012) Separation of Rhythms of EEG Signals Based on
Hilbert-Huang Transformation with Application to Seizure Detection. In: Lee,
G., Howard, D., Kang, J. J., & Ślęzak, D. (eds.), Convergence and Hybrid Information
Technology. ICHIT 2012. Lecture Notes in Computer Science, vol. 7425. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32645-5_62
Chen, L.-I., Zhao, Y., Zhang, J., & Zou, J.-Z. (2015). Automatic detection of alertness/
drowsiness from physiological signals using wavelet-based nonlinear features and
machine learning. Expert Systems with Applications: An International Journal, 42(21), 7344-
7355. https://dl.acm.org/doi/10.1016/j.eswa.2015.05.028
Gurudath, N., & Riley, H. B. (2014). Drowsy Driving Detection by EEG Analysis Using
Wavelet Transform and K-Means Clustering. Procedia Computer Science, 34, 400-409.
https://doi.org/10.1016/j.procs.2014.07.045
Kar, S., Bhagat, M., & Routray, A. (2010). EEG signal analysis for the assessment and
quantication of driver’s fatigue. Transportation Research Part F: Trac Psychology and
Behaviour, 13(5), 297-306, https://doi.org/10.1016/j.trf.2010.06.006
Kumar, G. R., Raju, S. V. P., & Kumar, D. S. (2012). Classication of EEG signals for
drowsiness Detection in brain and computer interface. GESJ: Computer Science and
Telecommunications, 4(36). https://www.researchgate.net/publication/261100256_
Classification_of_EEG_Signals_for_Drowsiness_Detection_in_Brain_and_
Computer_Interface