533 https://doi.org/10.17993/3ctecno.2021.specialissue8.513-535
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue
Noviembre 2021
5. CONCLUSIONS
In this algorithm, a feature level fusion method to fuse the two biometrics is introduced.
Encryption algorithm to do the operations in a simple manner without the need of S-box
is performed for fused image. Finally, the security parameters such as entropy, correlation,
computation time, Unied averaged changed intensity, Number of changing pixel rate are
calculated. As a future scope, this logic can be implemented with some public key algorithms
to implement in ATM.
REFERENCES
Discrete wavelet transform. (2008). https://en.m.wikipedia.org/wiki/Discrete_
wavelet_transform
ElAlami, M. E., Amin, A. E., & El-Al, A. E. (2012). A Personal Identication
Framework based on Facial Image and Fingerprint Fusion Biometric. International
Journal of Computer Applications, 51(7), 41-48. https://doi.org/10.5120/8058-1411
Krishneswari, K., & Arumugam, S. (2012). Multimodal Biometrics using Feature
Fusion. Journal of Computer Science, Science Publications, 8(3), 431-435. https://doi.
org/10.3844/jcssp.2012.431.435
Rajbhoj, S. M., & Mane, P. B. (2015). An Approach of Combining Iris and Fingerprint
Biometric At Image Level in Multimodal Biometrics System. International Journal
of Soft Computing and Engineering, 5(1), 102-106. https://docplayer.net/151961568-
An-approach-of-combining-iris-and-fingerprint-biometric-at-image-level-in-
multimodal-biometrics-system.html
Usman, M., Ahmed, I., Aslam, M. I., Khan, S., & Shah, U. A. (2017). SIT: A
Lightweight Encryption Algorithm for Secure Internet of Things International Journal
of Advanced Computer Science and Applications, 8(1), 1-10. https://doi.org/10.14569/
IJACSA.2017.080151
Wu, Y., Noonan, J. P., & Agaian, S. (2011). NPCR and UACI Randomness Tests for Image
Encryption. Cyber Journals: Multidisciplinary Journals in Science and Technology,