3C Empresa. Investigación y pensamiento crítico. ISSN: 2254-3376 Ed. 48 Vol. 10 N.º 4 Noviembre 2021 - Febrero 2022
102 https://doi.org/10.17993/3cemp.2021.100448.77-105
Hajek, P., & Henriques, R. (2017). Mining corporate annual reports for intelligent detection of
nancial statement fraud–A comparative study of machine learning methods. Knowledge-Based
Systems, 128, 139-152. https://doi.org/10.1016/j.knosys.2017.05.001
Heidari, A. A., Mirjalili, S., faris, H., Aljarah, I., Mafarja, M., & Chen, H. (2019). Harris hawks
optimization: Algorithm and applications. Future Generation Computer Systems 97, 849-872. https://
doi.org/10.1016/j.future.2019.02.028
Jan, C.-L. (2018). An eective nancial statement fraud detection model for the sustainable development
of nancial markets: Evidence from Taiwan. Sustainability, 10(2), 513. https://doi.org/10.3390/
su10020513
Jelodar, H., Wang, Y., Yuan, C., Feng, X., Jiang, X., Li, Y., & Zhao, L. (2019). Latent Dirichlet
Allocation (LDA) and Topic modeling: models, applications, a survey. Multimedia Tools and
Applications, 78(11), 15169-15211. https://arxiv.org/abs/1711.04305
Kalra, S., Li, L., & Tizhoosh, H. R. (2019). Automatic Classication of Pathology Reports using TF-
IDF Features. arXiv preprint arXiv:1903.07406. https://arxiv.org/abs/1903.07406
Kanapickienė, R., & Grundienė, Ž. (2015). The model of fraud detection in nancial statements
by means of nancial ratios. Procedia-Social and Behavioral Sciences, 213, 321-327. https://doi.
org/10.1016/j.sbspro.2015.11.545
Kumar, B. S., & Ravi, V. (2016). A survey of the applications of text mining in the nancial domain.
Knowledge-Based Systems, 114, 128-147. https://doi.org/10.1016/j.knosys.2016.10.003
Lin, C., Chiu, A., Huang, S.Y., & Yen, D.C. (2015). Detecting the nancial statement fraud: The
analysis of the dierences between data mining techniques and experts’ judgments. Knowledge-
Based Systems, 89, 459-470. https://www.semanticscholar.org/paper/Detecting-the-nancial-
statement-fraud%3A-The-of-the-Lin-Chiu/48bc08514070341439e382f887faba42b21212d9