3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Noviembre 2020
134
https://doi.org/10.17993/3ctecno.2020.specialissue6.119-135
Gunawardana, P.M. (2010). Automatic Detection and Recognition of Trac Signs (Doctoral
Dissertation). University of Colombo, Sri Lanka.
He, K., Zhang, X., Ren, S., & Sun, J. (2015). Spatial Pyramid Pooling in Deep
Convolutional Networks for Visual Recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(9), 1904-1916. https://doi.org/10.1109/
TPAMI.2015.2389824
Jung, S., Lee, U., Jung, J., & Shim, D.H. (2016). Real-Time Trac Sign Recognition
System with Deep Convolutional Neural Network. In IEEE 13th International
Conference on Ubiquitous Robots and Ambient Intelligence (URAI), pp. 31-34 https://www.
semanticscholar.org/paper/Real-time-Trac-Sign-Recognition-system-with-deep-
Jung-Lee/17a608865ba3c6b2c27fcb18973c27139560954a
Kale, A.J., & Mahajan, R.C. (2015). A Road Sign Detection and the Recognition for
Driver Assistance Systems. IEEE International Conference on Energy Systems and Applications,
pp. 69-74.
Sermanet, P., & LeCun, Y. (2011). Trac Sign Recognition with Multi-Scale
Convolutional Networks. In The 2011 International Joint Conference on Neural Networks,
pp. 2809-2813. https://doi.org/10.1109/IJCNN.2011.6033589
Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv preprint. https://arxiv.org/abs/1409.1556
Szegedy, C., Ioe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-V4, Inception-
Resnet and the Impact of Residual Connections on Learning. arXiv Preprint. https://
arxiv.org/abs/1602.07261
Vennelakanti, A., Shreya, S., Rajendran, R., Sarkar, D., Muddegowda, D., &
Hanagal, P. (2019). Trac Sign Detection and Recognition Using a CNN Ensemble.
In 2019 IEEE International Conference on Consumer Electronics (ICCE), pp. 1-4. https://
doi.org/10.1109/ICCE.2019.8662019