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ABSTRACT
The buck-boost converter operating in critical conduction mode (CRM) is commonly 

utilized in various applications because of  many advantages like protection against 

short circuit, minimum component count, low operating duct-cycle, and low voltage on 

MOSFETs. However, its input power factor (PF) is not high while operating in constant on-

time control. To attain unity PF for universal input voltage range, a new control scheme of  

variable on-time control (VOTC) is proposed in this paper. The VOTC can be implemented 

by modulating the turn-on time of  the buck-boost switch.  The working principle and 

performance comparison of  the converter is discussed with both types of  control scheme. 

The input PF the converter is high in case of  VOTC than the COTC. Simulation results 

are presented to verify the effectiveness of  the proposed control strategy).

KEYWORDS
Buck-boost converter, Power factor, Critical conduction mode.
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1. INTRODUCTION
Power electronic technology is employed in various sorts of  modern equipment’s which has 

made our life, simpler, easier and comfortable.  However, with this comfort and easiness 

this technology brings power quality issues because it is centered on solid-state devices. 

These issues introduce harmonic contained current or distorted current which has several 

drawbacks like more power loss, voltage distortion and EMI compatibility issues etc. 

Therefore, the standards are set by various industrious like IEC61000-3-2 limit and IEEE 

519 (IEC 61000-3-2:2014, 2014; Langella, Testa, & Alii, 2014) to limit these harmonics. 

In order to meet relevant harmonic standard and reducing input current distortion, power 

factor correction (PFC) converter has been widely applied (García et al., 2003; Singh et al., 
2011; Memon et al., 2017; Memon et al., 2018; Memon et al., 2019). Generally, conventional 

power converter topologies, such as boost, buck-boost and buck converters, can be used to 

achieve low cost single-stage PFC, and each converter topology has its own characteristics. 

The traditional boost PFC converter, with advantages of  low input current ripple, high 

efficiency and inherent current shaping ability, is a good choice for PFC application.  

However, it cannot maintain high efficiency at universal input voltage. Buck converter can 

maintain high efficiency at all input voltages. However, there is no input current when 

the output voltage is less than input voltage (Memon et al., 2018). The traditional buck-

boost topology, with advantages of  inherent current shaping ability, low cost, step-down 

and step-up voltage conversion, is a good choice compared with flyback, CUK and SEPIC 

converters. It is used in many applications such as wind energy control, Adaptive control 

applications, and power amplifier applications etc. However, when the on-time is constant, 

the power factor (PF) of  buck-boost PFC converter is low.

For modifying the performance of  buck/boost converter, various researchers have proposed 

various techniques and control schemes. In Ghanem, Al-Haddad, and Roy, (1996), a new 

control mechanism is presented to increase the PF near to unity for a cascaded buck-

boost converter for the high-power application in continuous conduction mode (CCM). 

Comparative analysis between single stage buck converter and the single buck-boost 

converter in discontinuous conduction mode is given in Moschopoulos and Zheng (2006). 

The work in Wei et al. (2008) has done the comparative study between the bridged buck-

boost PFC converter and bridgeless buck/boost PFC converter and proposed the bridgeless 
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buck-boost PFC topology for improving the efficiency. In Jayahar and Ranihemamalini 

(2011), inductor average current control strategy is proposed for improving PF of  CCM 

buck-boost converter. The work in Jayahar, Ranihemamalini, and Rathnakannan (2016) 

has given the solution to improve PF for CCM buck converter. The bridgeless buck-boost 

converter with switched capacitor for low power applications is put forward in Saifullah et 
al. (2017) for reducing the conduction losses and improving the efficiency. 

In this paper, an improved control scheme for buck-boost converter operating under critical 

conduction mode (CRM) is proposed to realize unity PF. 

This paper is divided into six sections. In section 2, the operation states of  CRM buck-

boost PFC converter are analyzed with traditional control. The proposed control scheme 

is introduced in section 3 to realize unity PF. Then the comparative analysis is discussed 

in section 4 in terms of  input PF. In section 5, the effectiveness of  proposed topology is 

evaluated by simulation results. Finally, some conclusions are drawn in section 6.

2. OPERATING PRINCIPLE OF THE CONVERTER
Figure 1 illustrates the power circuit of  buck-boost converter in CRM mode. It comprises 

of  bridge diode rectifier, a buck-boost switch (Qb-b), a freewheeling diode (Dfw), an inductor 

(L) and an output capacitor (Co), etc.   

3 

 

Figure 1. Power circuit of a buck-boost converter. 
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The instantaneous and rectified input voltage during half  line cycle can be given as:

sinin a pkv v V q= = (1)
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The inductor and switch current waveforms are shown in Figure 4. 

 

Figure 4. The inductor and switch current waveforms. 
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From (4) and (5), following relation is obtained:
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With traditional control the input current of  buck-boost converter is given as:

http://doi.org/10.17993/3ctecno.2020.specialissue5.93-105


99 http://doi.org/10.17993/3ctecno.2020.specialissue5.93-105

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Abril 2020

( )( _ _ )

sin

2 sinin b b COTC on
o pk

pk o

i t
L

V V

V V

q

q +
= (8)

The expression of  average input power is derived as:

( )
2 2

_ 0

sin
sin2

pk o
in COTC

o

on

pk

t
L

V V
P d

V V
p

qp
q q=
+ò (9)

The value of  ton is calculated from ‘’ (9)’’ by assuming 100% efficiency:

( )
2

2

0

sin
2

sinpk o

o

pk o

on

V V d
V

LP
t

V
p q

q

p

q
=

+ò (10)

The input PF with traditional control scheme can be got by joining (1) and (8-10).
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The table of  input PF with traditional control is drawn in Table 1 with the help of  equation 

(11) and the specification of  the converter. It indicates low PF at high input voltage. 

Table 1. Input PF with traditional control.

S.NO VRMS PF(COTC)

1 90 0.968

2 110 0.963

3 130 0.96

4 150 0.956

5 170 0.954

6 190 0.951

7 210 0.949

8 230 0.947

9 250 0.945

10 264 0.945
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Through Fourier analysis, the harmonics of  the input current is calculated as:

0

2 sin ( 1,3,5.....)n inI i n d n
p

q q
p

= =ò (12)

Based on (9) and (12), Figure 5 is drawn. It indicates the comparison of  measured current 

harmonic with IEC Class C limits. It can be observed that the 5th and 7th harmonic for 

converter is unable to meet the limit value. Specially, the 5th harmonic cannot meet the 

standard for universal input voltage range, while 7th harmonic at high input voltage.  
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3. PROPOSED VARIABLE ON-TIME CONTROL SCHEME TO 
IMPROVE INPUT PF 

To achieve unity PF, the variation rule for ton should be:
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By substituting (13) into (8), we can get average input current with VOTC as:
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V
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L
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It shows shape of  average input current is purely sinusoidal at all input voltage. Thus, unity 

PF can be realized.
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From (1) and (15), the average input power is expressed as:

2

_ 4
on pk

in VOTC

k V
P

L
= (15)

Assuming converter to be 100% efficient, then kon is calculated as:
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V
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4. COMPARATIVE ANALYSIS
From (14), the input PF curve with proposed control scheme is drawn in Table 2, which 

also includes the PF values with traditional control scheme of  Table. It can be concluded 

that the PF of  the converter with proposed control is higher as compared to COTC. The 

percentage improvement of  PF increases as the input rms voltage is increased. 

Table 2. Input PF curve with proposed control scheme.

S.NO VRMS PF(COTC) PF(VOTC) % Improvement
1 90 0.968 1 3.30

2 110 0.963 1 3.84

3 130 0.96 1 4.00

4 150 0.956 1 4.40

5 170 0.954 1 4.82

6 190 0.951 1 5.15

7 210 0.949 1 5.38

8 230 0.947 1 5.60

9 250 0.945 1 5.80

10 264 0.945 1 5.82

5. SIMULATION VERIFICATION
For verifying the effectiveness of  VOTC strategy, simulations are carried out. The input 

voltage range is 90-264VAC, and the output is 24V. For ensuring the current to be in CRM, 

L6561 IC is used. All the components in the circuit are selected as idea. The Simulation 

results in Figure 9 and Figure 10 shows that vin, and iin, for proposed converter with COTC 

and VOTC at 110VAC input, respectively. The input waveform shows that with VOTC 
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the input current is sinusoidal as compared with COTC. Hence, the near unity PF can be 

realized by using proposed control scheme.

Figure 9. vin, and iin, with COTC.

Figure 10. vin, and iin, with VOTC.

5. CONCLUSION
A variable on-time control scheme and the implementation circuit are proposed in this 

paper to make the shape of  average input current purely sinusoidal for the CRM buck–

boost PFC converter. The analysis and simulation results are given. Compared with that of  

the COT control:

1. Input current meets the harmonic standard.

2. PF is high

3. THD is low
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