3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Ed. 33 Vol. 9 N.º 1 Marzo - Junio
92
http://doi.org/10.17993/3ctecno/2020.v9n1e33.79-93
REFERENCES
Afzal Hoq, S. M., Sulaeman, E., & Okhunov, A. (2016). Error Analysis of Heat Conduction
Partial Dierential Equations using Galerkin’s Finite Element Method. Indian Journal of Science and
Technology, 9(36), 1-6. https://www.researchgate.net/publication/309135057_Error_Analysis_of_
Heat_Conduction_Partial_Dierential_Equations_using_Galerkin’s_Finite_Element_Method
Ainsworth, M., & Oden, J. T. (1997). A posterior error estimation in nite element method. Computer
Methods in Applied Mechanics and Engineering, 142(1-2), 1–88. https://doi.org/10.1016/S0045-
7825(96)01107-3
Antonopoulou, D. C., & Plexousakis, M. (2010). Discontinuous Galerkin methods for the linear
Schrödinger equation in non-cylindrical domains. Numerische Mathematik, 115(4), 585-608.
https://doi.org/10.1007/s00211-010-0296-5
Burden, R. L., & Faires, J. D. (2001). Numerical Analysis (7th ed.). Thomson Brooks/Cole.
Deb, M. K., Babuška, I. M., & Oden, J. T. (2001). Solution of stochastic partial dierential equations
using Galerkin nite element techniques. Computer Methods in Applied Mechanics and Engineering,
190(48), 6359–6372. https://doi.org/10.1016/S0045-7825(01)00237-7
Gerald, C. F., & Wheatley, P. O. (2003). Applied Numerical Analysis (7th ed.). Pearson Education.
Gockenbach, M. S. (2002). Partial Dierential Equations: Analytical and Numerical Methods. Society for
Industrial and Applied Mathematics.
He, X., Lin, T., & Lin, Y. (2010). Interior penalty bilinear IFE discontinuous Galerkin methods for
elliptic equations with discontinuous coecient. Journal of Systems Science and Complexity, 23(3), 467–
483. https://doi.org/10.1007/s11424-010-0141-z