325 http://doi.org/10.17993/3ctecno.2020.specialissue4.313-327
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Marzo 2020
REFERENCES
Armstrong, T. S., Cohen, M. Z., Weinbrg, J., & Gilbert, M. R. (2004). Imaging
techniques in neuro oncology. Seminars in Oncology Nursing, 20(4), 231-239. https://
doi.org/10.1016/j.soncn.2004.07.003
Aruna Devi, B., & Pallikonda Rajasekaran, M. (2018). Performance Evaluation
of MRI Pancreas Image Classication Using Articial Neural Network (ANN).
In Satapathy S., Bhateja V., Das S. (eds.) Smart Intelligent Computing and Applications.
Smart Innovation, Systems and Technologies, vol. 104. Springer, Singapore. https://doi.
org/10.1007/978-981-13-1921-1_65
Aruna Devi, B., Pallikonda Rajasekaran, M., & Thiyagarajan, A. P. (2019). Analysis
and classication of malignancy in pancreatic magnetic resonance images using
neural network techniques. International journal of imaging systems and technology. https://
doi.org/10.1002/ima.22314
Huang, G., Zhu, Q., & Siew, C. (2004). Extreme learning machine: a new learning scheme
of feedforward neural networks. In 2004 IEEE International Joint Conference on Neural
Networks (IEEE Cat. No.04CH37541), 2, 985-990, vol. 2. https://doi.org/10.1109/
IJCNN.2004.1380068
Ibrahim, W. H., Osman, A. A., & Mohamed, Y. I. (2013). MRI brain image
classication using neural networks. In 2013 International Conference on Computing,
Electrical and Electronic Engineering (ICCEEE), 253-258. https://doi.org/10.1109/
ICCEEE.2013.6633943
Kavitha, S., & Thyagharajan, K. K. (2012). Features based mammogram image
classication using weighted feature support vector machine. In Krishna P. V., Babu
M. R., Ariwa E. (eds.) Global Trends in Information Systems and Software Applications.
ObCom 2011. Communications in Computer and Information Science, vol. 270. Springer,
Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-29216-3_35