309 http://doi.org/10.17993/3ctecno.2020.specialissue4.301-311
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Marzo 2020
REFERENCES
Aslantas, V., & Toprak, A. N. (2014). Multi focus image fusion by dierential evolution
algorithm. In Proceedings of the 11th International Conference on Informatics in Control,
Automation and Robotics - Volume 2: ICINCO, 312-317, Vienna, Austria. https://doi.
org/10.5220/0005061103120317
Chabira, B., Skanderi, T., & Aichouche, B. A. (2013). Unsupervised change detection
from multitemporal multichannel SAR images based on stationary wavelet
transform. In 7th International Workshop on the Analysis of Multi-temporal Remote Sensing
Images (Multi-Temp). https://doi.org/10.1109/Multi-Temp.2013.6866025
Daneshvar, S., & Ghassemian, H. (2010). MRI and PET image fusion by combining
IHS and retina-inspired models. Information Fusion, 11(2), 114-123. https://doi.
org/10.1016/j.inus.2009.05.003
Ellmauthaler, A., Pagliari, C. L., & da Silva, E. A. B. (2013). Multiscale Image
Fusion Using the Undecimated Wavelet Transform With Spectral Factorization and
Nonorthogonal Filter Banks. IEEE Transactions on Image Processing, 22(3), 1005-1017.
https://doi.org/10.1109/TIP.2012.2226045
Huang, P. W., Chen, C. I., Lin, P. L., Ping, C., & Hsu, L. P. (2014). PET and MRI brain
image fusion using wavelet transform with structural information adjustment and
spectral information patching. In 2014 IEEE International Symposium on Bioelectronics and
Bioinformatics (IEEE ISBB 2014), 1-4. https://doi.org/10.1109/isbb.2014.6820901
Li, Y., & Liu, G. (2009). Cooperative Fusion of Stationary Wavelet Transform and Non-
subsampled Contourlet for Multifocus Images. In Second International Symposium
on Computational Intelligence and Design, 1, 314-317. https://doi.org/10.1109/
ISCID.2009.86
Rowden, A. (2019). Types, symptoms, and treatment of a brain tumor. https://www.
medicalnewstoday.com/articles/315625.php
Sahoo, T., & Patnaik, S. (2008). Cloud Removal from Satellite Images Using Auto
Associative Neural Network and Stationary Wevlet Transform. In First International