191 http://doi.org/10.17993/3ctecno.2020.specialissue4.181-193
3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254 – 4143 Edición Especial Special Issue Marzo 2020
REFERENCES
Ababei, C., Selvakkumaran, N., Bazargan, K., & Karypis, G. (2002). Multi-objective
circuit partitioning for cutsize and path-based delay minimization. Proceedings of the
2002 IEEE/ACM International Conference on Computer-Aided Design - ICCAD 02, 181–185.
https://doi.org/10.1145/774572.774599
Alpert, C. J. (1998). The ISPD98 circuit benchmark suite. Proceedings of the 1998 International
Symposium on Physical Design - ISPD 98. https://doi.org/10.1145/274535.274546
Areibi, S., & Yang, Z. (2004). Eective Memetic Algorithms for VLSI Design = Genetic
Algorithms Local Search Multi-Level Clustering. Evolutionary Computation, 12(3), 327–
353. https://doi.org/10.1162/1063656041774947
Du, H. Q., & Qi, J. B. (2010). Application of a Hybrid Algorithm Based on Genetic
Algorithm and Hill-Climbing Algorithm to Tool Path Optimization in CNC
Machining. Advanced Materials Research, 102-104, 681–685. https://doi.org/10.4028/
www.scientic.net/amr.102-104.681
Gill, S. S., Chandel, R., & Chandel, A. (2010). Genetic Algorithm Based Approach to
Circuit Partitioning. International Journal of Computer and Electrical Engineering, 196–202.
https://doi.org/10.7763/ijcee.2010.v2.136
Lin, G., & Zhu, W. (2014). An Ecient Memetic Algorithm for theMax-Bisection Problem.
IEEE Transactions on Computers, 63(6), 1365–1376. https://doi.org/10.1109/tc.2013.7
Marichelvam, M. K., Prabaharan, T., & Yang, X. S. (2014). A Discrete Firey
Algorithm for the Multi-Objective Hybrid Flowshop Scheduling Problems. IEEE
Transactions on Evolutionary Computation, 18(2), 301–305. https://doi.org/10.1109/
tevc.2013.2240304
Nagarajan, K. (2018). A Predictive Hill Climbing Algorithm for Real Valued multi-
Variable Optimization Problem like PID Tuning. International Journal of Machine
Learning and Computing, 8(1), 14–19. https://doi.org/10.18178/ijmlc.2018.8.1.656