Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.448-467
465
Knerr, S., Persnnaz, L. & Dreyfus, G. (1992). Handwritten Digit Recognition
by Neural Networks with Single–layer Training. IEEE Transactions on neural
networks, 3(6), pp. 962–968.
Knerr, S., Personnaz, L. & Dreyfus, G. (1992). Handwritten digit recognition
by neural networks with single–layer training. IEEE Transactions on Neural
Networks, 3(6), pp. 962–968. doi: http://dx.doi.org/10.1109/72.165597
Lauer, F., Suen, C. Y. & Bloch, G. (2007). A Trainable Feature Extractor for
Handwritten Digit Recognition. Pattern Recognition, 40(6), pp. 1816–1824. doi:
http://dx.doi.org/10.1016/j.patcog.2006.10.011
LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E.,
Hubbard, W. E. & Jackel, L. D. (1990). Handwritten digit recognition with
a back–propagation network. Advances in neural information processing systems, pp.
396–404.
LeCun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, H. p., Guyon,
I., … Hubbard, W. (1989). Handwritten Digit Recognition: Applications
of Neural Network Chips and Automatic Learning. IEEE Communications
Magazine, 27(11), pp. 41–46. doi: http://dx.doi.org/10.1109/35.41400
LeCun, Y., Jackel, L. D., Bottou, L., Cortes, C., Denker, J. S., Drucker, H.,
… Vapnik, V. (1995). Learning Algorithms for Classication: A Comparison
on Handwritten Digit Recognition. Neural networks: the statistical mechanics
perspective, pp. 1–16.
Lee, Y. (1991). Handwritten Digit Recognition using k Nearest–Neighbor, Radial–
basis Function, and Backpropagation Neural Networks. Neural Computation,
3(3), pp. 440–449. doi: http://dx.doi.org/10.1162/neco.1991.3.3.440
Liu, C. L., Nakashima, K., Sako, H. & Fujisawa, H. (2003). Handwritten
Digit Recognition: Benchmarking of State–of–the–Art Techniques. Pattern
Recognition, 36(10), pp. 2271–2285.