
LOAD STATUS EVALUATION FOR LOAD
BALANCING IN DISTRIBUTED DATABASE
SERVERS

Dildar Husain
School of Computer Science and Information Technology, Maulana Azad National

Urdu University, Hyderabad. Telangana (India)
E–mail: dildarhussainkhan786@gmail.com

Mohammad Omar
School of Computer Science and Information Technology, Maulana Azad National

Urdu University, Hyderabad. Telangana (India)
E–mail: omarmanuu@gmail.com

Khaleel Ahmad
School of Computer Science and Information Technology, Maulana Azad National

Urdu University, Hyderabad. Telangana (India)
E–mail: khaleelamna@gmail.com

Vishal Jain
Bharati Vidyapeeth’s Institute of Computer Applications and Management

(BVICAM). New Delhi (India)
E–mail: mca.bvicam@gmail.com

 Ritika Wason
Bharati Vidyapeeth’s Institute of Computer Applications and Management

(BVICAM). New Delhi (India)
E–mail: rit_2282@yahoo.co.in

Recepción: 05/03/2019 Aceptación: 01/04/2019 Publicación: 17/05/2019

Citación sugerida:
Husain, D., Omar, M., Ahmad, K., Jain, V. y Wason, R. (2019). Load status evaluation
for Load Balancing in Distributed Database Servers. 3C Tecnología. Glosas de innovación
aplicadas a la pyme. Edición Especial, Mayo 2019, pp. 422–447. doi: http://dx.doi.
org/10.17993/3ctecno.2019.specialissue2.422–447

Suggested citation:
Husain, D., Omar, M., Ahmad, K., Jain, V. & Wason, R. (2019). Load status
evaluation for Load Balancing in Distributed Database Servers. 3C Tecnología. Glosas de
innovación aplicadas a la pyme. Special Issue, May 2019, pp. 422–447. doi: http://dx.doi.
org/10.17993/3ctecno.2019.specialissue2.422–447

mailto:omarmanuu@gmail.com
mailto:khaleelamna@gmail.com
http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447
http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447
http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447
http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

424

ABSTRACT
Distributed database servers are very popular as they provide data availability,
reliability, replication, and partition for both homogeneous as well as
heterogeneous software and hardware. In this paper, we analyze the previous
works on load balancing of database servers. Further we also propose an algorithm
for controlling job distribution at the database servers in different node partitions.
We also formulate a methodology for load status evaluation of database servers
to balance their loads for effective load status management. The load status of
the database servers depends on three important parameters namely processor,
RAM, and bandwidth. On the basis of load status, the clients’/users’ requests
can then be directed to another database in a distributed environment in order
to balance the load effectively to meet user demands in an unobtrusive manner.

KEYWORDS
Load balancer, DBalancer, Balance controller, M/M/c: ∞/ ∞ model, M/M/c:
N/ ∞ model, Bully algorithm, Dlb.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

425

1. INTRODUCTION
Current web network traffic must simultaneously handle a million or billion clients’
requests. It is naturally expected that the servers uninterruptedly handle all such
requests and provides the required data that may be audio, video, image or text
form, etc. To serve this large number of user requests for an unimaginably large
amount of data, multiple servers are expected to work together. Any single point
of failure in this situation can result in loss of important data due to hardware,
software, network or configuration failures. A load balancer (Xu, Pang, & Fu,
2013) can help save important client data in case of failure because if one server is
not able to reply to the request, another backend server will be available to service
the user requests (Wu, 2011). It may also be noted that such distributed databases
may be situated in different geographical locations. These different partitions can
be categorized into 3 different states namely (1) idle (2) normal and (3) overloaded
(Xu, et al., 2013). For balancing the load, two different load balancing strategies
are generally applied, namely static load balancing and dynamic load balancing
(Xu, et al., 2013). In static load balancing (Chen, Chen, & Kuo, 2017), once the
jobs are assigned there is no change at runtime. While in dynamic load balancing
the job is reassigned as per the situation. Hence, if the status of the server is
overloaded then the job is sent to the idle server or normal server. The rest of this
manuscript is arranged as follows. Section II discusses the significant works that
have been taken as the basis for this work. Section III outlines the basic model of
the proposed system. Section IV elaborates the balance controller component of
the proposed system. Section V explains how jobs are assigned to the distributed
partitions. Section VI details how the incoming jobs are assigned to the varied
nodes in a Distributed Database System. Section VII lays down the strategy for
load status evaluation. Section VIII concludes the work.

2. RELATED WORK
Xu, et al., (2013) introduced a load balancing model. They used each node from
the lowest to highest load degree. Whenever the load is assigned the complete

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

426

table is simultaneously refreshed. They also defined the architecture of one
controller with multiple servers. This controller worked as a load balancer and
round–robin algorithm was applied for load balancing (Xu, et al., 2013).

Chen, Li, Ma and Shang (2014) discussed a dynamic load balancing method for
cluster–based server on Open Flow technology in a virtual environment. They
solved the load balancing problem through network virtualization in the data
center. Their experiments showed that it is plausible to construct a powerful,
flexible load balancer in a cost–effective manner. OpenFlow technology is suitable
for load balancing in varied environments as it provides the flexibility for varied
load balancing strategies in a convenient form (Chen, et al., 2014).

Chen, et al., (2017) presents a novel load balancing architecture named “CLB”.
This architecture can be applied to both physical as well as virtual web servers
with ease (Chen, et al., 2017).

3. BASIC MODEL OF PROPOSED SYSTEM
Distributed databases may consist of homogeneous as well as heterogeneous
Breitbart, Olson, and Thompson (1986); Sadowsky and Szpankowski’s (2009)
databases. Communication between each of such databases is realized with the
help of the network. In distributed databases, there is centralized software to
control or manage incoming data operations, such as update, delete, retrieve,
and create (Silberschatz, Korth & Sudarshan, 2013). Our proposed system is
based on the distributed ideology where the database servers are distributed at
different geographical locations. The partitioning schema of the proposed model
is depicted in Figure 1 below.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

427

Figure 1. Partition of Distributed Database.

The proposed load balancing strategy is based on the distributed concept defined
in Tanenbaum and Steen (2007). When the request arrives at the server the load
balancing system activates. The load balancer, which is in server compares this
job value (how much bandwidth, processor and RAM are required) (Chen, et
al., 2017) to the server status. If server load status is normal, then the job will be
assigned, otherwise, the request will be redirected to another server.

4. BALANCE CONTROLLER OF THE PROPOSED SYSTEM
The solution to the load balancing problem is done by the balance controller
component of the server. When the request arrives at any database server of any
geographical location, the job request is assigned and new status to the database
server is generated. This information is forwarded to the balance controller of
the server. After receiving this information, the balance controller updates its
table of database status.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

428

5. ASSIGNING JOBS TO THE DISTRIBUTED PARTITIONS
When the job arrives at the server, it chooses the optimal part of the database
distribution. The status of distributed databases can be classified into three main
states, namely (1) idle (2) normal and (3) overloaded. These states can be explained
as below:

Figure 2. Choosing Partition for Job Assignment.

•	 Idle: – There is no work going on the database partition.

•	 Normal: – The database is accepting and responding to the user request.

•	 Overloaded: – The database does not have enough capacity to accept and
respond to the user request.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

429

	
Figure 3. Distributed Partitions.

6. ASSIGNING JOBS TO THE NODE IN DISTRIBUTED
DATABASE SYSTEM (XU, PANG & FU, 2013)
We now list how jobs should be assigned to varied nodes in a distributed database
system. Algorithm 1 below step–by–step lays down the complete process of job
assignment to a specific node in a distributed system.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

430

Step–1:– Load Value
(Lv)=∑_(i=1)^n(αiRi)
Step–2:– I: – Load_value(Lv)=Lvmin
II: –Load value(Lv)min<Load value(Lv)
<=Load_value(Lv)high
III: – Load value(Lv)high<=Load value(Lv)	
Algorithm: Choosing a partition for job assignment
Begin
While (job) do
Search Node (job)
If Node Status==idle||normal then
Assign job
Else
Search Node+1
Update table of node status in the main controller
Endif
End while
End

Algorithm 1: Job Assignment to Node in a Distributed Database System

From algorithm 1, it is clear that a job will not be assigned to any node until
the node will come under idle or normal status. To balance nodes on the basis
of their status, how do we calculate the status of any node attached with many
devices? The solution to this problem is that three parameters play the deciding
parameters in this decision namely: processor, RAM and bandwidth. If we are
able to calculate the threshold value of these parameters, then we can easily
generate the status of any node.

7. STRATEGY FOR LOAD STATUS EVALUATION
In this section we now consider load balancing between nodes as per their status.
However, the node status calculation is a challenging task as each node is attached
to many devices. Here we again suggest that three main parameters, namely

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

431

processor, RAM and bandwidth can serve as the deciding factors. If we are able
to calculate the threshold value of these things, then we can easily generate the
status of any node.

7.1. STRATEGY FOR MAIN MEMORY STATUS EVALUATION

Each and every node in the distributed database have their own memory for
accepting the request and retrieving the requested data, but the memory has
limited capacity to store data. Based on memory capacity we can calculate the
high threshold (Özsu & Valduriez, 2011) value for evaluation of the node status.
When a client sends any request to the database to retrieve the data, the memory
will be consumed based on the size of the requested data. Here, we have two
different parameters, namely memory size and the size of the requested data.
From the size of the memory and size of requested data, we can calculate the
memory state whether it is in overloaded or in the idle or normal state. For this
calculation, we assume the parameters described below:

Cs=Max(R) (1)

Cs=Cs–Ps (2)

M=Cs–Min(s)/Max(s)–Min(s) (3)

N=Ps–Min (Ps)/Max(s)–Min(s) (4)

If N<=M then the request will be accepted otherwise overloaded message will
be generated.

Here Cs denotes current status; Max(R) is the maximum capacity of the main
memory; Ps is processed request size; In equation (3) Min(s) is the minimum
capacity of current size and Max(s) is the maximum capacity of the current size
of the main memory; In equation (4) Min (Ps) is the minimum capacity of process
size and Max (Ps) is the maximum capacity of process size of process request.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

432

7.2. STRATEGY FOR PROCESSOR STATUS EVALUATION

We first explain how the processor works. The processor, first of all fetches the
instruction from memory with the help of control unit and executes it. These
instructions may arrive at the processor in many states such ready, waiting, and
execution state (Silberschatz, Korth, & Sudarshan, 2013). Departure from one
state to another state is called process scheduling (Tanenbaum & Bos, 2015).
There are mainly two types of scheduling algorithms, namely pre–emptive and
non–preemptive scheduling (Tanenbaum & Bos, 2015). When a program enters
into the system the processor executes it in the form of instructions. But if a large
size program is sent to the processor to execute, this type of program generates a
job queue because at a time only one instruction will be executed (multiple core
processor can execute multiple instructions at a time) (Hennessy, 2019). These
instructions or processes wait in the ready state before the execution.When a
processor finishes its job, the processor scheduler schedules the next instruction
from the ready state to an execution state. If the processor is busy in execution
due to some processes in memory, then the process of ready state goes to the
waiting state and waits for processor until it is free. These waiting queues serve
as a buffer (a type of memory) having some capacity to store the instructions.
But the question arises about how much instructions can be stored in a waiting
queue or what is the size of the waiting queue. Here our main aim is to generate
the high threshold value of a processor. To know this, we apply the queuing
model mechanism in which there may be (1) single server model or (2) Multiple
server models. Both single and multiple server models are based on two queuing
models, namely (1) Finite Queue Length and (2) Infinite Queue Length (Shortle,
Thompson, Gross & Harris, 2018; Bhat, 2008). Here, we are considering only a
single server model in which we can calculate how the server accepts the requests
from the queue.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

433

7.2.1. M/M/C : ∞/∞ MODEL

ρ=λ/cμ<1 or ρ/c= λ/cμ<1 (5)

Here λ= request arrival time per unit of time, μ= service rate per unit of time
and c= number of servers. Assume that μn =nμ where n<c and μn =cμ

So, pn = ρn p0 = λn/μn p0
pn = λn /μ, 2μ, 3μ, 4μ, …….nμ
pn = (λ /μ)n (1/n! * p0) where n<c
pn = (λn /μ 2μ 3μ 4μ 4μ 4μ) (1/n! * p0)
 If we consider that there are 4 servers are available.

So pn = (λn /c! μncn–c)* (p0) where n ≥ c

p0+p1+p3+ …………pn= 1

n=1

C−1

∑ ρ n

n! p0() +
ρ n

c!cn−1 p0()
⎛

⎝⎜
⎞

⎠⎟
= 1 (6)

The above equation is both for n <c or n ≥ c and

Lq = n=c

∞

∑ n − c()pn (7)

Here n=c (server) that is one. If more than one server then n=c+1, n=c+2,
n=c+3 and more.

So exact server number è

n–c = c+1–c= 1,
n–c = c+2–c= 2,
n–c = c+3–c= 3 etc

Lq =
ρ c+1() p0()()

c −1()! c − p()2() (8)

where j=1, 2, 3, 4, …, ∞ request

Example: – Find the values of Ls, Lq, Ws&Wq if the c=2, λ=10/hour, μ=6/
hour. We know that ρ=λ/cμ<1

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

434

p0 =
0

c−1

∑ ρn
n!

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

+ ρ c
c!

⎛
⎝⎜

⎞
⎠⎟

1

1− ρ
c

⎛
⎝⎜

⎞
⎠⎟

⎤

⎦

⎥
⎥
⎥
⎥

−1

(9)= 1 +10
6

 + 10
6

⎛
⎝⎜

⎞
⎠⎟

2

* 1
2

⎛
⎝⎜

⎞
⎠⎟

* 1

1− 5
6

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

−1

= 1 + 10
6

 + 100* 6
36* 2

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥

−1

= 0.0909

Lq =
ρ c+1() p0()()

c −1()! c − ρ()2() = 3.7878
Ls= Lq+ρ = 3.7878+1.666 = 5.4544

Wq = Lq/λ =3.7878/10 = 0.378 hour\
Table 1. Server Status by giving Arrival Rate and Service Rate in M/M/c: ∞/∞ Model.

Parameter Type Parameter Value

Arrival Rate/ Second
Service Rate/ Second
Average Number of Customer in System (L)
Average Number of Customer Waiting in the Queue (Lq)
Average Time spent in System
Average Waiting Time in Queue (Wq)
Processor Utilization (%)
Number of Servers

10
6

5.4545

3.7879
0.5455
0.3788
0.83

2

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

435

Figure 4. Queuing Theory Models Calculator.

Figure 5. Queuing theory models calculator.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

436

7.2.2. M/M/C: N/∞ MODEL

A system will not accept any other request if it will contain an N number of
requests in the system.

Here p0, p1, p2, p3, …,pn
& p0+ p1+ p2+ p3 +…+ pn = 1

 (10)

pn =
ρnp0

c!()* cn−c() (11)

This is the probability that N person in the system. So:

Lq = n=c

N

∑ n− c()pn
forn≥c after expanding it.

Lq =
ρ c+1

c −1()!
1− ρ

c
⎛
⎝⎜

⎞
⎠⎟
n−c+1()

− n− c +1() 1− ρ
c

⎛
⎝⎜

⎞
⎠⎟

ρ
c

⎛
⎝⎜

⎞
⎠⎟
N−c

c − ρ()2
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 (12)

Example: – Find the values of Ls, Lq, Ws and Wq where N=7, λ=10, μ=6 and
c=2?

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

437

We know that:

Lq = 1+ ρ =
ρ()2 1− ρ

c
⎛
⎝⎜

⎞
⎠⎟

6

2! 1− ρ
c

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−1

 (13)

= (1+5/3+5.5425)
= 0.1218

When 2 servers are available then:
p0 +p1 = p0 + ρ p0 =0.3248
p0 +p1 + p2 =0.3248 + ρ2 /2 (p0) = 0.4939

So, Lq = 125/27 (0.1218) {1–(5/6) – 6*1/6 (5/6)5} = 1.335
pn = p7 = 0.68 = (λ/6*(12)6)p0
λeff = λ(1–pn) = 9.32

So, Ls = 2.89 (expected number of the people in the system)
Ws = Ls/ λeff = 0.31 hours
Table 2. Server Status by giving Arrival Rate and Service Rate in M/M/c: N/∞ Model.

Parameter Type Parameter Value
Queue Capacity
Arrival Rate/ Hour
Service Rate/ Hour
Average Number of Customer in the System (Ls)
Average Number of Customer waiting in the Queue (Lq)
Average Time Spent in the System
Average Waiting Time in Queue
Processor Utilization (%)
Number of Servers

7
10
6

3.133
1.336

0.3362
0.1695
0.83

2

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

438

Figure 6. Queuing Theory Models Calculator.

NOTE: – from these, we can understand that if λ/µ<=1 then the processor
performance will decrease and at least it will generate a high threshold value.

7.3. STRATEGY FOR LOAD BALANCING BY SELECTING NEXT
CONTROLLER IF THE MAIN CONTROLLER FAILS

Suppose there is only one main controller for a group of servers and it fails due
to hardware, software or network failure then the whole system will fall down.
To avoid these problems if we attach one controller with every server then if
any server falls down the next controller, which attached with another server will
wake up and work as the main controller.

The coordinator selection problem is to opt a controller from among a group
of the controller in a distributed system and it acts as the central coordinator. A
Bully algorithm is used to solve the coordinator selection problem (Dhamdhere,
2012).

•	 P2P communication: All controllers can send messages to all other controllers.

•	 Assume that all controllers have unique IDs, i.e. one is highest.

•	 Assume that the priority of the controller’s Ci is i.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

439

7.3.1. BULLY ALGORITHM

Any controller Ci sends a message to the present coordinator; if no response in
T time units, then Ci tries to select itself as a coordinator. Details are as follows
(Silberschatz, et al., 2013):

An algorithm for controller Ci which detects the drawbacks of coordinator
•	 Controller Ci sends a “Selection” message to every controller with higher

priority.

•	 If no other controller responds, controller Ci starts the coordinator code
execution and sends a message to all controllers with lower priorities saying
“Selected Ci”

•	 Else, Ci waits for T’ time units to hear from the new coordinator, and if there
is no response then start from step (1) again.

Algorithm for other controllers (also called Ci).
•	 If Ci is not the coordinator, then Ci may receive either of these messages

from Cj

•	 If Pi sends “Selected Cj”; (message received, if i< j)

•	 Ci updates its records to state that Cj is the coordinator.

•	 Else if Cj sends “Selection” message (i> j)

•	 Ci sends a response to Cj state that it is alive

•	 Ci starts a selection.

Suppose, there are a total of seven servers and each server contains one controller
and these servers are connected to each other. Due to some kind of failures such
as hardware or software then another controller who is idle then it will be active.
In the below figure, the 7th number is a coordinator because it has the highest
priority.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

440

Figure 7. Total Number of Nodes.

Figure 8. Connection of Server Nodes.

In the Figure 8, it shows that each and every server with a controller connected
with each other.

Figure 9. Response of Coordinator.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

441

Figure 10. Message Broadcast by a Node.

Then it sends the message to another controller and starts the election to choose
the next coordinator. Including itself, it started an election that who has greater
priority.

Figure 11. Reply by higher priority node.

Then controller 6 replies the response that it has greater priority, including a
controller (5).

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

442

Figure 12. Message broadcast for new Coordinator.

At the last controller (6) will become the next coordinator.

Figure 13. Output–1.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

443

Figure 14. Output–2.

Figure 15. Output–3.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

444

Pseudo Code of Load Controller:

int LoadController1=0;
int LoadController1=1;
int LoadController1=2;
int LoadController1=3;
void Controller Selection()
 {
 If (LoadController1 < LoadController2 && LoadController1 < LoadController3
&& LoadController1 < LoadController4 || LoadController1 < 10)
 {
 LoadController1++;
LCSelect.Text = “Load Controller1”;
 }
else
 {
if (LoadController2 < LoadController3 && LoadController2 <
LoadController3 && LoadController2 < LoadController4 || LoadController2
<10)
 {
LoadController2++;
LCSelect.Text = “Load Controller2”;
 }
else
 {
if (LoadController3 < LoadController4 || LoadController3 < 10)
 {
LoadController3++;
LCSelect.Text = “Load Controller3
 }
else
 {

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

445

if (Lo4dController2 < LoadController3 || LoadController4 < 10)
 {
LoadController4++;
LCSelect.Text = “Load Controller4”;
 }
else
 {
Message(“Sorry..All Load Controllers are failed..”)
 }
 }
 }
 }
 }

8. CONCLUSION AND FUTURE WORK
In this research paper, we discussed how the databases are distributed in different
places. The existing research papers show that only one load balancer is available
to balance the load. If it fails, the entire system may shut down. To remove this
problem every database server has its own balance controller. If one of them
fails the others will be activated and it will work as it was working previously.
Load balancing technology is necessary today in environments where big data
are working. To handle the big data, it is necessary that database servers should
be balanced to work properly. To balance the load, the best algorithm is required
which takes minimum time complexity.

3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143

446

REFERENCES
Bhat, U. N. (2008). An Introduction to Queueing Theory, Modeling and Analysis in

Applications. Boston, U.S.A.: Birkhäuser.

Breitbart, Y., Olson, P. L. & Thompson, G. R. (1986). Database integration
in a distributed heterogeneous database system. In IEEE Second International
Conference on Data Engineering, pp. 301–310. doi: http://dx.doi.org/10.1109/
icde. 1986.7266234

Chen, S., Chen, Y. & Kuo, S. (2017). CLB: A novel load balancing architecture
and algorithm for cloud services. Computers & Electrical Engineering, pp. 154–
160. doi: http://dx.doi.org/10.1016/j.compeleceng.2016.01.029

Chen, W., Li, H., Ma, Q. & Shang, Z. (2014). Design and implementation of
server cluster dynamic load balancing in a virtualization environment based
on OpenFlow. Proceedings of The Ninth International Conference on Future Internet
Technologies – CFI 14. doi: http://dx.doi.org/10.1145/2619287.2619288

Dhamdhere, D. M. (2012). Operating Systems A Concept–BasedApproach. (3rd ed.).
New York, U.S.A.: Mc Graw Hill.

Feng, Y., Li, D., Wu, H. & Zhang, Y. (2000). A dynamic load balancing
algorithm based on the distributed database system. Proceedings Fourth
International Conference/Exhibition on High–Performance Computing in the Asia–Pacific
Region, pp. 949–952. doi: http://dx.doi.org/10.1109/hpc.2000.843577

Hennessy, J. L. (2019). Computer architecture: A quantitative approach. U.S.A.: Morgan
Kaufmann.

Kumar, K., Gupta, S. K. & Singh, G. (2014). A Novel Survey on an Intelligent
and Efficient Load Balancing Techniques for Cloud Computing. International
Journal of Computer Science and Technology, 5(4), pp. 76–80.

Özsu, M. T. & Valduriez, P. (2011). Principles of Distributed Database Systems
(3rd ed.). Springer.

Edición Especial Special Issue Mayo 2019
DOI: http://dx.doi.org/10.17993/3ctecno.2019.specialissue2.422-447

447

Sadowsky, J. S. & Szpankowski, W. (2009). Maximum Queue Length
and Waiting Time Revisited: Multiserver G/G/ c Queue. Probability in the
Engineering and Informational Sciences, 6(02), 157. doi: http://dx.doi.org/10.1017/
s0269964800002424

Shortle, J. F., Thompson, J. M., Gross, D. & Harris, C. M. (2018).
Fundamentals of queueing theory. Hoboken, NJ: Wiley.

Silberschatz, A., Korth, H. F. & Sudarshan, S. (2013). Database System
Concepts. Mc Graw Hill.

Tanenbaum, A. S. (2013). Distributed operating systems. Pearson Education.

Tanenbaum, A. S. & Bos, H. (2015). Modern Operating Systems. (4th ed.). Pearson
Education.

Tanenbaum, A. S. & Steen, M. V. (2007). Distributed Systems Principle and Paradigm
(II ed.). Pearson Education.

Wu, Y. (2011). Computing and Intelligent Systems. In Communications in Computer
and Information Science, 1–548. doi: http://dx.doi.org/10.1007/978–3–642–
24010–2

Xu, G., Pang, J. & Fu, X. (2013). A load balancing model based on cloud
partitioning for the public cloud. Tsinghua Science and Technology, 18(1), pp. 34–
39. doi: http://dx.doi.org/10.1109/tst.2013.6449405

Zuikevičiūtė, V. & Pedone, F. (2008). Conflict–aware load–balancing
techniques for database replication. Proceedings of the 2008 ACM Symposium on
Applied Computing – SAC 08. doi: http://dx.doi.org/10.1145/1363686.1364205

	/SUMMARY/
	1. Deep Architectures for Human Activity Recognition using Sensors
	2. Energy Efficient and High-Performance FIR Filter Design on Spartan-6 FPGA
	3. A Lexicon based Approach Towards Concept Extraction
	4. An Economical And Relatively Efficient Implementation of the Real-Time Solar Tracking System
	5. To Build Corpus of Sindhi Language
	6. Wind and Solar Energy Potentials an Provinces, Especially
	7. Improved Spider Monkey Optimization Algorithm to train MLP for data classification
	8. Implementation & Performance Analysis of Bid
	9. Decentralized Approach to Secure IoT based
	10. Data Preprocessing: A preliminary step for web data mining
	11. The Implementation of M-Commerce in Supply
	12. Modification in Hill Cipher for Cryptographic Application
	13. Mapping Land Cover Damages in Mega Floods
	14. A Study of Mobility Models for UAV Communication Networks
	15. Increasing the Efficiency of Smart Patient
	16. Series solution of fractional Pantograph equations via Taylor series
	17. Optimal Balancing and Control of a Dynamic Load
	18. Predicting Student Academic Performance
	19. Controlling the Altitude Dynamics of
	20. Analyzing Students’ Academic Performance through Educational Data Mining
	21. Load status evaluation for Load Balancing in Distributed Database Servers
	22. NOVEL FRAMEWORK FOR HANDWRITTEN DIGIT RECOGNITION THROUGH NEURAL NETWORKS
	23. Spatial Analysis of Annual and Seasonal Sunlight Variation through GIS Kriging Techniques
	24. WSN Based Smart Advertisement in Intelligent Transportation System using Raspberry Pi
	25. Massive MIMO, mm Wave and 5G Technology Insights and Challenges
	26. Novel Design and Modeling of Shutter Valves for Camless Engines
	27. Residential Community Micro Grid Load Scheduling and Management System

