3C Tecnología. Glosas de innovación aplicadas a la pyme. ISSN: 2254–4143
34
Roggen, D., Calatroni, A., Rossi, M., Holleczek, T., Förster, K., Tröster,
G., et al. (2010). Collecting complex activity datasets in highly rich networked
sensor environments. In 2010 Seventh international conference on networked sensing
systems (INSS), pp. 233–240. IEEE. doi: http://dx.doi.org/10.1109/
INSS.2010.5573462
Ronao, C. A. & Cho, S. B. (2015). Evaluation of deep convolutional neural
network architectures for human activity recognition with smartphone sensors.
In proceeding of the KIISE Korea Computer Congress, pp. 858–860.
Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjærgaard,
M. B., Dey, A., et al. (2015). Smart devices are dierent: Assessing and
mitigatingmobile sensing heterogeneities for activity recognition. In Proceedings
of the 13th ACM Conference on Embedded Networked Sensor Systems, pp. 127–140.
ACM.
Sztyler, T. & Stuckenschmidt, H. (2016). On–body localization of wearable
devices: An investigation of position–aware activity recognition. In 2016
IEEE International Conference on Pervasive Computing and Communications (PerCom),
pp. 1–9. IEEE.
Twomey, N., Diethe, T., Fafoutis, X., Elsts, A., McConville, R., Flach,
P., et al. (2018). A comprehensive study of activity recognition using
accelerometers. In Informatics, 5(2), p. 27. Multidisciplinary Digital Publishing
Institute.
Wang, J., Chen, Y., Hao, S., Peng, X. & Hu, L. (2019). Deep learning for
sensor–based activity recognition: A survey. Pattern Recognition Letters, 119, pp.
3–11. doi: http://dx.doi.org/10.1016/j.patrec.2018.02.010
Xi, R., Li, M., Hou, M., Fu, M., Qu, H., Liu, D., et al. (2018). Deep dilation
on multimodality time series for human activity recognition. IEEE Access, 6,
pp. 53381–53396. doi: http://dx.doi.org/10.1109/ACCESS.2018.2870841